
Statistics of Shape Methods

• Via Euclideanization and then via methods that 
assume Euclidean features
– Euclideanization may be done in stages

• E.g., poysphere to sphere, then PNS

• On Riemannian manifold
– Lecture on that by Tom Fletcher on 3/7
– Gaussian via Brownian motion [Sommer]

• On tangent planes
– E.g., at mean

• The major reference: 
Marron & Dryden, 
Object Oriented Data Analysis



Euclidean Statistics Methods
• PCA, and removal of noise

– And other related producers of modes of variation

• Classification
– Producing separation direction

• Support Vector Machine and 
Distance-Weighted Discrimination

• Kernels
• Multi-entity analysis

– Producing & using histograms along separation direction 

• Hypothesis Testing
– Permutation tests
– DiProPerm
– Corrections for multiple tests

• Segmentation
• Longitudinal methods



Means on Curved Manifolds

• Extrinsic
– Do it in ambient space and then 

project onto the manifold
– Fast, but often gives non-intuitive results

• Fréchet = barycenter
– Minimizer of sum of squared distances from samples
– According to an appropriate distance metric
– Median: minimizes sum of distances from sample

• Less effect of outliers

• Backwards
– Requires a sequence of dimension reducing spaces

• PCA
• PNS

– Possibly after mapping onto high-dimensional sphere



Means on Manifolds

• Fréchet = barycenter
– Minimizer of sum of squared distances from samples
– According to an appropriate distance metric
– Median: mimimizes sum of distances from sample

• Less affect of outliers (see Marron & Dryden figure)



Means on Curved Manifolds

• Backwards mean from PNS

Backwards mean (light) is

better than Fréchet mean (red)



Nonlinear Effects of Curved Shape Spaces

• On means, on PCAish analysis, e.g., PNS
– Effects depend on sign of curvature of the shape space

• Differ on whether Euclidean distance is larger or smaller than 
the geodesic distances

• So the following do not act linearly
– Including a new sample into a mean or PNS
– Iteratively producing mean from 

means of successive subgroup means



Effects of Curved Shape Spaces

• On manifolds such as polyspheres the central limit 
theorem still holds: different approaches yield 
differences proportional to 1/N, 
with N = # of samples
– And a limiting distribution that is a sort of Gaussian
– For some kinds of shape such as trees with certain 

metrics central limit theorem  does not hold, so 
convergence to mean is slower (“smeariness”), or even 
sticky

• Stratified manifolds: have components of many dimensions
– E.g., Trees with certain metrics

• Spheres with data near both poles



Distributions About Means on Shapes

• Typically the shape features are
– High dimension d,  but often not inherently
– Locally highly correlated
– Low sample size n
– So HDLSS for the noise but not for the signal

• Means for HDLSS act surprisingly for independent, 
equally distributed random variables
– There are hardly any data samples near the mean
– For equally distributed independent random variables with unit 

standard deviation, in the limit for large n, all the data lives near 
a sphere of radius d away from the mean

– Can be a good model for noise
– Ref: Marron & Dryden, section 14.2



Covariance, Modes of Variation, and 

Entropy on Curved Manifolds

• Want representation independent of 
boundary parameterization

• Often benefits from pre-centering
• Modes of variation: minimizer of 

distances to subspaces ordered by dimension 
– PCA, PNS (backwards)

• ICA: directions of maximal non-Gaussianity
• Often captures causality well

– Classification separation direction
• Use DWD for robustness
• Difference of means can be useful

• Entropy: Spread of distribution
– So for correspondence, want low entropy
– From principal variances li

• Problem from very small principal variances

– For Gaussian: (d/2) [1+ ln(2p) +avg ln l]



Modes of Variation Usage

• Dimensionality reduction
– Coefficient of selected modes become features

• Segmentation by posterior probability optimization
– Coefficients of shape eigenmodes are optimized over

• arg maxz (p(I | z) p(z)) with z = mz + Si ci si vi

with si being covariance eigenvalues and
vi being covariance eigenmodes

= arg minc (Si di
2 + Si ci

2)), where the representation J of 
I ( which depends on z–based correspondence) 
has PCA results leading to  J = mJ + Si di ri wi



Segmentation by Posterior Optimization

• Let z be the geometric representation of one or more objects
• Let J be the representation of image intensity features
• Segmentation by posterior probability optimization is 

computing arg maxz p( z | I)

– p( z | I) = p(J | z)  p( z ) /p(J), so 
arg maxz =  p(J | z)  p( z ) =  arg minz (  log p(J | z) + log p( z ) )

– = if both distributions are Gaussian, 
arg mina (Si (b

lkhd
i
2/llkhd

i) + Sj(a
shape

i
2/lshape

i),  if 
shape and intensity patterns are independent, where

• The bi are the coefficients of principal components of the covariance of J
• The ai are the coefficients of principal components of the covariance of z
• The lshape

i are the principal variances of shape
• llkhd

i are the principal variances of J, i.e., of the intensity features 
in shape relative coordinates



Segmentation by Posterior Optimization, 2

• The issues now are
– What are the intensity features J?
– How can we get correspondence of J over the training population 

and in the candidates in the population?
– How can we get few eigenmodes of z, 

thus speeding the optimization?

• To get intensity features in correspondence their locations in 
the near exterior of the shape need to be in correspondence
– The (q, t1, t2) are appropriate for just that purpose

• Though we might modify the shape correspondences to 
also reflect intensity pattern correspondences

• t2 (the along-spoke radial distance) needs to be 
extended to the object’s near exterior without crossing

• So J comes from a tuple over a selected collection of 
(q, t1, t2)



Segmentation by Posterior Optimization, 3

• What are the intensity features J?
– Often histograms in corresponding regions are effective

• Where the histograms are probability distributions

• Thus, the question is how to find metrics on 
the distances between probability distributions
– Mallows distance = Wasserstein distance (Statistics terms) = 

Earthmover’s distance (Computer Science term)
• Map probability densities to quantiles; only need a few
• The quantile at P = Pk is the fraction of the density integral < Pk

– Euclidean distances between quantiles = Earthmover’s distance  
between the histograms

• Rather few Pk are needed

RE Broadhurst UNC dissertation



Segmentation by Posterior Optimization, 4

• How can we get few eigenmodes of z, thus speeding 
the optimization arg mina (Si (b

lkhd
i
2/llkhd

i) + Sj(a
shape

i
2/lshape

i)?
– This is a problem of dimensionality reduction
– And it is a problem of getting accurate 
– eigenmodes and eigenvalues

• For PCA, eigenmodes of a covariance matrix

• The deep problem is that noise pollutes the 
eigenvalues and  eigenmodes and greatly increases 
the number of apparently significant eigenmodes.
– See next slides
– Scree plots show 

sorted eigenvalues
– MP plots show density

of eigenvalues

Scree plot 

vs. MP plots

for IID 

indep noise



Getting the Right # of Eigenmodes

• How can we get few eigenmodes from Cov(z), thus 
speeding the optimization?

• The deep problem is that noise pollutes the 
eigenmodes and greatly increases the number of 
apparently significant eigenmodes.
– The covariance matrix is a sample

from a distribution and has noise [Marron, ch 14]
– The solution lies in

Marchenko-Pastur analysis
• Studies the probability distribution 

of eigenvalues (MP plots)
• When n < d there will be a spike

of height n-d at l = 0
• And the noise-based spread of that

spike hides the correct eigenvalues

Scree plot 

vs. MP plots

for IID 

indep noise; 

n=2000, d=400



Weakness in evaluation via principal 

variances (PCA eigenvalues) [Choi]
• There is noise in real data and 

noise due to data analysis

– Affects the eigenmodes

– Affects the eigenvalues

(here actually in ratio 16:4:1)

• Two ways to look at this

– Scree plots: li vs. i

– Histogram of eigenvalues: 

Marchenko-Pastur plot

– Misleads due to corruption 

and hiding of the eigenvalues

• See next slide

• Choi worked on new methods 

based on Silverstein extensions to 

Marchenko-Pastur

Noisefree

histogram 

of 

eigenvalues

(M-P 

plot)

Noisefree

eigenvalue

vs. index

(Scree plot).

l values at

4.9,17.3,77.9



Effect of noise on principal variances
• Modifies the real eigenvalues

– Apparent increase in total variance

– Apparent change in fraction of 

total variance

• Changes the eigenvectors

• Masks the real eigenvectors

Histogram of eigenvalues (insets have 

larger ordinate scale) vs. as noise level 

increases

Eigenvalue vs. index (Scree plot), as noise level increases

ls at 77.9, 

17.3, and 4.9

ls all 

“hidden
ls at 96.6, 

42.5, and 

“hidden”

ls at 68.6, 

19.1, and 5.8



Estimation of # of modes

by Marchenko-Pastur Analysis

• [Choi & Marron, see Marron & Dryden bibliog.]
– “Estimation of the number of spikes using a generalized 

spike population model”
– Can estimate noise from the Marchenko-Pastur histogram
– When eigenvalues are high enough to be “pure noise”
– Remaining problem, how to compute the eigenmodes as 

if unpolluted by noise

MP plots, d/n =1 (black),

1/3 (red), 1/10 (blue),

1/100 (green)
Scree plot 

vs. MP plots

for IID 

indep noise

[M&D, Ch 14]



Applicability of 

Marchenko-Pastur Analysis

• HY Choi: transformations of PNS modes 
to allow MP analysis

• DIVAS [Prothero, …, Marron]
– Study is on multiple entities (see later)
– Independence across the features, not all that important
– Independence among the instances of each feature!
– Not sensitive to the particular probability distribution
– Will see this later for multiple objects

Scree plots: d/n =1/5

for different noise

distributions



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi]
• Our “eigenanalysis” is via PNS, i.e., on sphere
• Hyo Young Choi studied this problem

– By producing derived features from the sphere that do 
follow the MP distribution

• But she only studied great subspheres, whereas the common 
analysis uses small subspheres, when hypothesis test supports 
that

– Her pdf’s are on the course’s google drive
– See next slides

• But the open problem remains: How to select the 
eigenmodesde by depolluting the MP-plot, given 
noise properties from high eigenvalues which show 
~pure noise
– Besides dealing with the actual subsphere approach



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi], 2



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi], 3



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi], 4



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi], 5



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi], 6



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi], 7



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi], 8



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi], 9



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi], 10



Correlation

• Covariance corrected for scale by dividing each feature by 
its standard deviation

• Each variable is normalized by its standard deviation
• Careful: zero correlation does not mean statistical 

independence
• Careful about its meaning in multimodal distributions

– Non-independence may come in 
which mode the random variable falls



Gaussians

• Importance
• Relation to PCA
• Production

– Analytic form in Euclidean space
• Given Principal frame R and eigenvalues L

– Diffusion: f(x,t)/t = 2f with f(x,0)=d(x) with t=s2/2
– Brownian motion 

• On curved surfaces, esp. spheres
– Wrapped Gaussian
– von Mises distribution 

• ~ wrapped Gaussian on sphere
• With an analytic form not needing sums over wraps
• Most commonly used due to its rather simple form

– Brownian motion (random walks)
• Moving frames [Sommer]



von Mises Distribution

• See Wikipedia
• On spheres of arbitrary dimension

– ~ wrapped Gaussian

• Maximum entropy distribution for data on circle 
(thought of as complex) for which the first real and 
imaginary circular moments (coefficients of 
Fourier terms of base frequencies) are specified

• Formula as function of latitude q from north pole
– p(q | m, k) = exp (k  cos(q - m)) (/(2pI0(k))
– k ~ 1/s2

– I0(k) is modified Bessel function of 
the first kind of order 0



Gaussian Probability distributions on 

curved manifolds [Sommer]

• Augment the manifold with a local 

rolling tangent frame; 

probabilistically analyze 

on that

– Then project back 

down to the manifold

• Yields probability densities 

on paths

– That is on shape changes! (how to 

analyze p(shape change) has been an 

open question



Results of [Sommer] Path Probabilities 

on a Toy Problem

• Corpora callosa by 9-pt PDM

• 10 training cases

• Mean and covariance computed 

together from these paths 

weighted by their probabilities (ML)

• Vectors are momenta from most probable path

from training case (dashed) to mean (solid) curves



Hypothesis Testing

• To test differences between classes
• To evaluate statistical methods

– For example, classification methods

• To make choices in statistical methods
– For example, between great sphere subdimensional

space and small sphere subdimensional space at a 
dimension-lowering step of PNS

• Small subsphere is best when it is 
clear that the data falls into that form

• Great subsphere is best when the 
data is in the form of a cluster



Permutation Tests for Hypothesis Testing

• Consider a classification procedure producing a 
separation direction in feature space
– For now a  vector v in Euclidean space

• But can be a geodesic on a curved space

– With ability to project cases 
(feature tuples) on the separation geodesic

• Along geodesics to the separation geodesic

– For each class produces a histogram
– The question is how statistically significant 

the difference between the histograms is

• Done by permutation tests
– By geometric object property (GOP)
– Correction for multiple tests (GOPs)
– Evaluating a classification

• DiProPerm [Marron & Dryden, sec 13.1]



Objectives for Hypothesis Testing 

on (Geometric) Features z

•Characterization of differences between classes

• By hypothesis testing on null hypothesis:  

no difference

• What kind of (geometric) differences?

• Where are there (geometric) differences?



Hypothesis Testing

• Null hypothesis: two classes are the same in 

regard to features

• Reject null hypothesis if observed interclass 

differences are appropriately unlikely to happen by 

chance under null hypothesis

– Choose the P0 value such that if the observed 

interclass deviation or more happens at random 

under the null hypothesis with probability P < P0, 

we will reject the null hypothesis



Univariate Hypothesis Testing 
(to determine significant differences)

• Test is by DOUBLE NEGATIVE: 

Reject (null) hypothesis that the two classes are not different

– I.e., reject hypothesis that two classes are the same, i.e., 

observed differences come from random sampling 

• Typically tests on magnitude of differences 

between class means: mA and mB

– T0 = | mA - mB | / (sA
2/nA + sB

2/nB )½

– Test with significance threshold y: If T΄ s.t.

1-pT΄(T ≤ T΄) = γ and T0 T΄, then reject 

– “t-test”, depends on Gaussian assumption within each class

– Other measures of difference are possible, esp. for parameter 

conglomerates

"A t-test is a statistical test in which the test statistic follows a 

student t-distribution if the null hypothesis is supported" [Wikipedia]



Univariate Hypothesis Testing by 

Permutation Test

• Still test on magnitude of differences 

between class means: mA and mB

– T0 = | mA - mB | / (sA
2/nA + sB

2/nB )½

– But create distribution of T under null hypothesis

empirically

– With that distribution see percentile of T0 in that 

distribution: p-value = 

#Perms larger  /  #Perms total

• Under null hypothesis Group A and Group B are not 

different, so any permutation into a new pair A, B is 

equivalent.

• Each pair produces a T (normalized mean diff.)

• Over all permutations produces the empirical T 

distribution



Concept: Shape Analysis

• Traditional analysis: e.g., regional volume

• Other possibility: Local analysis

Binary Segmentation

Volumetric analysis: Size, Growth

Shape Representation Local Statistical 

analysis

Slide: M. Styner



Statistical Analysis of Shape

• “Locations” with

– Correspondence 

– Pose normalized or pose-free

• Analyze Geometric Object Property

– GOP per location

– Univariate, e.g.,

• Log Thickness

– Multivariate, e.g.,

• Point locations (x,y,z)

• Deformation displacement vector

• Log length, PNS pair 
for direction

• S-rep GOPs, e.g., fitted frame rotations

• Multivariate + Global shape features, 
e.g., volume

Slide: M. Styner



Hypothesis Testing 

for Multiple Features

• Hypothesis test for each location/feature set: 

– 2 groups: Is the mean of group A different from the mean of 
group B?

• E.g., Schizophrenia group vs Control group

– P-value of group mean difference

– Significance map

– Threshold α = 5%, 1%, 0.1%

– Or z value (difference from mean/std. deviation)

• Parametric distribution, e.g. Gaussian, or

• Non-parametric: model free

– P or z value directly from observed distribution

– Distribution estimation via permutation tests

– But need correction for multiple comparisons

– Otherwise, test on some variables will be randomly significant

Slide: M. Styner



Many features, many, too many ...

• Many local features computed independently

– 1000 - 5000 features

• Even if all features would be pure noise, many locations would 
be computed as significantly different 

• Overly optimistic  Raw p-values

– High sensitivity, low specificity

• But overly pessimistic  Correction
based on no inter-GOP correlation

– That is, FWER or FDR correction

• Multiple comparison problem

– P-value correction

– General Linear Mixed Modeling

• Model covariance structure

– Random Field Approaches (Worsley)

• Many assumptions, smoothing



Hypothesis Testing with Locality

• Goal: given training data sets of objects zk in two classes, 
determine whether there are significant differences 
between the classes and if so, where

– Where (locality): positions or other parameters

– Training data: {zk |1 ≤ k ≤ nA; nA+1 ≤ k ≤nA + nB}

• Method: Hypothesis test with initial Geometric Object 
Property(ies) (GOPs) at each location

– A GOP may be a tuple, e.g., object normal direction

– With corrections for  multiple comparisons, which will lead to a different  
threshold for each location  GOP

• Commensuration by turning T values into p values

• Making p values for each feature std Gaussian

• Then decorrelation via PCA



Permutation Hypothesis Tests on 

>1 Variable

• Estimate variable’s distribution

– Permute group labels

• Na , Nb in Group A and B

• Create M permutations

• Compute means mja, mjb within perms,

j = GOP index, and thus | mja - mjb | within 

perms

• Use backwards means for non-Euclidean 

GOPs

• Not ready to histogram because

• GOPs are incommensurate

• Some GOPs are non-Euclidean

• Each GOP has its own distribution

• GOPs are correlated



Permutation Tests on >1 Variable 

m-diff fixup

• Commensurate by transforming each 
mean difference into a probability via its 
histogram

• Make distributions same and joint 
distribution Gaussian by turning each 
distribution into a standard Gaussian

• Two cumulative histogram transformations: 

quantiles have uniform probability

• Cumulative dist. of v’ble → uniform

• Quantile f’n of normal → st’d Gaussian

• What’s left is handling covariance of 

transformed variables



Hypothesis Testing for Shape-

or Appearance-based Diagnosis

• Multiple tests w/ high correlation (locations, local shape 
features)

– Some features live on spheres – need backward means, others 
are Euclidean

– Correlation, esp. between nearby location

– Allows much less pessimistic multiple test correction

– Markov approaches are possible

• General approach, using permutation tests:

– Analyze each feature separately to map it onto a standard normal 
Euclidean variable

• PNS allows this for variables on spheres

– Compute covariance matrix of mapped variables

– Permutation test overall or on variables modified 
to have no correlation with the others



Steps in non-linear global permutation test

#

create N permutations

For each 

permutation and 

feature, get p-value

pkj=Cj
-1(Tkj)

pkj is in [0,1]Tkj 

Tkj = , 

(CPNS d, back-

wards mean), also 

T0j

)ˆ,ˆ( bkjakjd mm

Compute 

cumulative 

hist Cj of T_j 

over all

permut’ns k

Map uniform distribution to normal 

distribution

Φ is a normal distribution c.d.f.

Ukj = Φ-1(pkj-1/2N) (in Std. normal dis)

Form matrix U from Uk tuples

Form covariance matrix: ΣU

Global test: on

Mk=Uk
TΣU

-1Uk

cumulative histogram

Local test: on marginal from 

nonisotropic Gaussan w/ ΣU

For each located-feature 

j, permutation k



Decorrelating the 

Standard Normal Variables

• Note that all hyperplanar (including dimension 1) cross-
sections through the mean of a Gaussian are Gaussian

– Also, the principal dimension-1 cross-sections yield 
uncorrelated variables

• SU is made up or correlated standard 1-dimensional 
Gaussians

– So the cross-sections are not principal (nor orthogonal)

• Use PCA on SU to produce new, uncorrelated variables 
formed as the eigenvector directions

– Multiple test correction assuming non-correlation is applicable

– For shapes (U formed from GOPs) there will be few such 
variables (ones with low eigenvalues can be cut out)



P-value correction via FDR or FWER

• False Discovery Rate (FDR)

– More relaxed assumptions

• More power than Bonferroni, higher specificity than uncorrected

– Used in fMRI, VBM and Deformation field analysis

• FDR: Proportion of false positive tests among those test for 
which H0 is rejected

– Bounds expected rate among those tests that show significance 
only.

• FWER correction: Rate of false positives among all tests, 
whether or not H0 is rejected

1. Controlling False Discovery Rate: A practical and powerful approach to multiple 

testing, Y Benjamini, Y Hochberg, J.R. Stat Soc Ser B 57 1995

2. Thresholding of Statistical Maps in Functional Neuroimaging Using the False 

Discovery Rate, CR Genovese, NA Lazar, T Nichols, NeuroImage 15 2002

Slide: M. Styner



FDR: Definition

• V: number of tests

• Active = rejected H0, significant test

Slide: M. Styner

inactive declared active

all active



FDR

• Of course, Via is unknown, only Da, Di, V

• Controlling FDR: ensure that on average the FDR is not 
bigger than predefined proportion q.

• Benjamini and Hochberg:

• Many tests, Ti/V ≈ 1

• Commonly: q = 0.05

– Higher values are reasonable in many problems

Slide: M. Styner



FDR interpretation
Multiple Comparison CorrectionHypothesis Testing

All p-values below line through origin with slope q are 

different/activeSlide: M. Styner



Corrected Multivariate Hypothesis Testing: by 

Permutation Tests [Pizer]

{T0j}
b0
i

a0
i

Tkj
k

TU
kj

U

{U0j}

Compute 

T to U 

transfor-

mation
US

PCA, 

yielding 

variables V

vi choices

LV

Corrected vi

significance 

thresholds from 

Mahal. dist

U features 

mapped back

from Vs

vi0 values



AUC as a Way to Compare 

Classification Methods

• ROC: Plot True Positive Rate (TPR) vs. 
False Positive Rate (FPR) 

• Area under ROC (AUC) is error rate in a 
2-alternative forced choice experiment
– 0.5 is pure guessing, 1.0 is perfect

• How to produce an AUC?
– By a random holdouts approach



ROC Analysis
SupervisedClassification and Clustering

• An important means of evaluating any medical procedure 
involving a detection of a signal

– Signal can be classification of voxel as the 
object to be segmented

• True positive rate (sensitivity) plotted 
against false positive rate (1-specificity)

– TPR: P(correct decision | signal present)

– FPR: P(wrong decision | signal absent); 
a measure of conservatism

– Common measure: area under ROC (AUC)

• Equivalent to 2-alternative forced-choice
fraction correct



AUC by Random Holdouts

• Assume data has Ni in class i
• Pick a subdivision fraction: 

f = # training cases / N = # all cases, e.g., 80%
– # test cases is complement
– In each holdout # of test cases is (1-f) N1 in class 1 and 

(1-f) N2 in class 2, with the cases chosen at random

• Run the experiment many times
– Each test case yields a d value, leading 

to a class choice, given a threshold
– Yield TPR and FPR for various thresholds

• Two options for combining trials
– Average AUCs per random set
– Combine FPR,TPR data over sets, 

to yield a single AUC



Combining random holdouts results 

into an AUC

• Each test case yields a d value 
along separation direction

• But d values are not commensurate 
across random holdouts
– They have different separation directions

• So turn d values into p values 
via Bayesian analysis
– Then the set of p values for each class can be coalesced 

to produce 2 histograms, which can yield an ROC and 
thus an AUC



Going from histograms on d

to P(schizo | D) function

• Bayesian formulation

– Two histograms are Gaussians 

with common variance from histo’s

P(d | schizo) and P(d | control)

• 𝑃 𝑠𝑐ℎ𝑖𝑧𝑜| 𝑑 =
𝑝𝑠 𝑝 𝑑|𝑠𝑐ℎ𝑖𝑧𝑜

𝑝𝑠 𝑝 𝑑|𝑠𝑐ℎ𝑖𝑧𝑜 + 1 − 𝑝𝑠 𝑝 𝑑|𝑐𝑜𝑛𝑡𝑟𝑜𝑙

– There is a parameter, Ps, the prior 

probability of being schizo

• Each value of Ps yields a different  

P(schizo | d) function

• Applied to test data, each value of Ps

yields a different true positive rate and 

true negative rate

• These rate curves yield an ROC

d

Ps

P(schizo|D) 

for 2 different 

values of Ps



Significance between 

AUC or ROC Differences

• No test exists because handling the correlations 
between holdouts has not been solved

• A statistics Professor has recommended 
developing a new measure of classification success 
designed to allow significance tests

• This is an open research problem



Shape Classification by Separating Directions

• Vector between means of classes: Dm
• Distance Weighted Discrimination (DWD)

– vs. SVM, vs. Dm

• Separator can be geodesic when on curved manifold
• Kernels to allow non-hyperplanar separators



Support Vector Machine
SupervisedClassification and Clustering

• Objective function to optimize over separating planes

– Term for size of gap between classes

– Term for misclassified cases

• Ultimately depends on the few cases nearest the gap plane 

(“support vectors”)

Diagram by Bülent Üstün

Data:

Optimization problem:

s.t.



Shape Classification by Optimal Divider

• Support Vector Machine (SVM)
– Maximize gap between classes

+ misassignment penalty
• Uses only training points 

at boundary of gap

• Distance Weighted Discrimination (DWD)
– Minimize Si 1/ri + mis-assignment penalty; 

ri = distance to divider (geodesic distance)
• Uses all training points, weighted higher, 

the closer they are to divider
• Thus more robust and more accurate
• Or use power of r; if , it is SVM



Separating Hyperplanes
SupervisedClassification and Clustering

• Normal to (n-1)-dimensional

hyperplane gives separating dimension

• A geodesic

• Plane (geodesic) gives threshold along 

normal for decision

– Additional features as functions of other 

features to get nonlinear decision 

boundaries (kernel methods)

• Support Vector Machine (SVM) or 

Distance Weighted Discrimination (DWD)



Distance Weighted Discrimination 

(DWD) [Marron]

• Objective function to optimize

– Term for distances of cases 

to hyperplane (sum of 

reciprocal distances)

– Can be geodesics on curved 

manifold

– Separating direction can be 

geodesic on curved manifold

– Term for misclassified cases 

with distance weighting

• More robust than SVM when 

high dimension, low sample 

size



SVM vs. dimension on toy data



DWD vs. dimension on toy data



Separation using Kernels

• Works for DWD and for SVM
• Approach

– Augment features by 
combinations of them

• Embeds feature space into a higher 
dimension feature space

• Changes what inner product means
• Common features: radial basis functions

– A la TPS; or isotropic Gaussians

– Hyperplane divider in augmented 
feature space mapped on the original 
feature space can separate by non-
hyperplanes

• For example, a circle or 
an ellipse for a 2D feature space

Slide: L Mbici



Shape Statistics Effectiveness Measures

• Generalizability, Specificity

• Cross-validation

• AUC (and ROC) for classification

• DiProPerm

• Applications
– Objectives and methods

– Measures of success



Generalizability and Specificity of Model 

for Probability of Shape [Davies 2003]

• Generalizability
– Measures closeness of new instances of the object to the 

probability distribution estimated from the training cases.

– Calculated by computing a shape space, spanned by the 

eigenmodes, on all but one of the training cases and computing 

the distance between the last shape and its projection onto this 

shape space, and doing this for each left out shape.

• Specificity
– Measures how well the estimated probability distribution 

represents only valid instances of the object. 

– Calculated as average distance between random samples in the 

computed shape space with their nearest members of the data. 



Generalizability and Specificity of S-rep-

implied Boundary PDM for 

Probability of Shape [Tu 2015]



Multi-entity Shape Analysis

• AJIVE has become DIVAS

– [Prothero, …, Marron, March 2023]

• On my Google drive for course

– Want to separately capture joint 
variations among entities, individual 
variations of each entity, noise variation

– For objects, entities can be individual 
object geometric features and inter-
object (e.g., links) geometric features

• Note a disease may 
jointly affect many objects

• Focusing classification on joint variation 
can be more robust due to removal of noise



AJIVE [Feng 2018]

• Assume K blocks 
(here objects, K=2); k=1,…,K

– With dk Euclidean features, 
n training cases; dk>>n in our situation

• Different blocks may have different features

– For each k restrict space to mk <n-1 dim space: 
delete dimensions with 0 eigenvalues and those 
designated as noise

• So data matrix is K blocks Xk, each Rmkn

• Want decomposition of each Xk into features 
in Joint matrix J, in individual matrices Ik, 
and into error matrix Ek

– Ek from low eigenvalued modes of PCA of Xk



AJIVE, 2

• Want decomposition of 
Rn-1n matrices Xk into 
Joint matrix J, 
individual matrices Ik, 
and error matrix Ek

– n is number of training cases

– J made of joint features 
orthogonal to each other, 
and to space of each Ik

– Ik features orthogonal to each other but not 
necessarily to those of Ik for a different k

Fig. from Prothero et al.



AJIVE, 3

• Features forming J come from 
a subspace of principal features 
with small angles 
across the Xk spaces

• Linear algebra is in
data item space 
rather than feature space

• The hard part is choosing the rank 
(dimension spanned by the feature 
tuples) of J

Fig. from Prothero et al.



AJIVE, 4: Algorithm [Z Liu]

• Let UkLkVk
T be result from SVD of Xk

– And removal of rows of Uk and Vk
T

according to eigenvalues Lk

– Yields updated Xk having lowered noise

• Form basis vectors of J by Principal Angle Analysis 
(PAA) on the the Vk

T pair (tuple if K>2)

– Small angles indicate joint correlation

– If  rows of V1
T are vi and rows of V2

T are qi,

for very small qj



AJIVE to DIVAS

• AJIVE has become DIVAS

– [Prothero, …, Marron, March 2023]

– Make rank choices by hypothesis tests

– Allows joint matrices of subsets of blocks

– Uses Marchenko-Pastur analysis



NeuJIVE [Z Liu, on MIDAG website]

• AJIVE on features derived from PNS

• The principle is that joint variation 
can show disease more robustly by 
removing individual and noise 
variations

• Liu’s results on aligned PDM’s from 
spoke ends of block 1: hippocampus 
and block 2: caudate confirm that



Multi-object Classification 

[Z Liu, on MIDAG website]
• AJIVE on features derived from PNS

– And using affine frames

• Principle: joint variation can show 
disease more robustly by removing 
individual and noise variations

• Liu’s results confirm that

– For hippocampus and links to linking 
surface between hippocampus and 
caudate

• But not caudate as it is not 
a good classifier by itself

– And better classification than 
PDM’s of the two objects



Longitudinal Analysis of Shape

• How does shape change over time?
• Longitudinal data set:

– Set of homologous objects (e.g., anatomical structures), each object 
being observed repeatedly at several time points; for now non-

cyclic, e.g., aging

– Shape varies across individuals
– For each individual shape temporal paths differ

• Temporal sampling may differ among individuals
• Initial times and rates of changes of shape longitudinal changes may differ 

among individuals

• Two approaches

– Use object features z on curved manifold and study z(t)
• See Fletcher lectures in this course and his papers

• Schiratti, …, Durrleman, for mixed effects models on manifolds: 
“Learning spatiotemporal trajectories from manifold-valued long’l data”

– Study deformations in time: f(x,t).     See upcoming slides



Longitudinal Analysis of Shape: 

Analysis Objectives

• Qualitative and quantitative assessment 
of change trajectories 

• Detection of common growth patterns 
shared in a population

• Characterization of their 
appearances in different subjects. 



Longitudinal Analysis of Shape

via Space Deformations

• References
– Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: 

Toward a comprehensive framework for the spatiotemporal statistical analysis 
of longitudinal shape data, IJCV 2013

• I quote and just previously have quoted figures and other material from this paper

• Given a longitudinal shape data set,

– Estimate a mean growth scenario M(t) representative of the 
population, and the variations of this scenario both in terms of 
shape changes and in terms of change in growth speed

– Characterize the typical variations in shape and in growth speed 
within the studied population by

• deriving intrinsic statistics in the space of spatiotemporal deformations

– Can be used to detect systematic developmental delays across 
subjects



Longitudinal Analysis of Shape

via Space Deformations, 2

• Data

• Issues
– Need to do subject by subject deformations across time: 

– Need to do subject by subject temporal deformations from atlas

• Time passes on differently for different subjects

– Need to do inter-subject deformations from atlas

• Thus need an atlas, M(t), typically a kind of mean

– Want to include covariates such as age (especially) 
and gender in the analysis

– Would like to do machine learning on this

• M Ren et al. (NYU), Local Spatiotemporal Representation Learning for 
Longitudinally-consistent Neuroimage Analysis, NeurIPS 2022



Longitudinal Analysis of Shape

via Space Deformations, 3

• Issues
– Need to do subject by subject 

deformations across time: Si(t)

– Need to do subject by subject 
temporal deformations from atlas

• Time passes on differently for different subjects

– Need to do inter-subject deformations from atlas

• Thus need an atlas, M(t), typically a kind of mean



Subject-specific Longitudinal Analysis of 

Shape via Space Deformations

• Let (t) be deformation of shape across time of atlas
– Let j(t) be deformation of shape across time of subject j
– Let fjt(x) be deformation of shape at time t from the atlas 

of subject j

• Via LDDMM approach minimize



Subject-specific Longitudinal Analysis of 

Shape via Space Deformations

• Let (t) be deformation of shape across time of atlas
– Let j(t) be deformation of shape across time of subject j

• But time runs differently for each subject
– Let (t) deform time: 

where the geometrical part has the form

• Via LDDMM approach minimize

– where Utj is the shape of object j at time t



Atlas Formation in 

Longitudinal Shape Analysis

via Space Deformations, 

• Find M0(t) that is miminizer integrated over time 
series for subjects j of energy between Sj(t) and 
M0(t)
– A sort of 

Fréchet mean

– The energy 
should be 



Longitudinal Shape Analysis

Including Age Covariate [S Hong]
• S Hong, J Fishbaugh, J Wolf, M Styner, G Gerig, the IBIS Network. 

Hierarchical Multi-Geodesic Model for Longitudinal Analysis of 
Temporal Trajectories of Anatomic Shape and Covariates. Springer 
Nature, 2019

–



Longitudinal Shape Analysis

Including Age Covariate [S Hong]
• Generalized linear model but on manifold

– Regression: see Fletcher discussion of this

– Ordinary generalized linear model, but on curved manifold

• Subject-wise trajectory: 

– Handling covariate, e.g., age

• It is associated with each shape data item

• Yields Intercept and slope each linear over sample values

• Needs to be carried to subject average geodesic: done by parallel transport 
to and along trajectory (see next slide)

–



Longitudinal Shape Analysis

Including Age Covariate [S Hong], 2

• Generalized linear model but on manifold

• Handling covariate, e.g., age
– It is associated with each shape data item

– “Linearly” implies geodesic intercept  and slope q over sample values

• Needs to be carried to subject average geodesic: done by parallel transport 
of tangent vectors to and along trajectory

– Angle and scale of vector kept constant along geodesic
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