
Non-PDM Representations 

and Statistics
• Srivastava boundary geometry modulo corresp.
• Skeletal representation

– Medial and skeletal mathematics
– S-reps

• Skeletal points, spokes
• Diffeomorphisms from ellipsoids, 

fitted frames
• Taheri via swept planar cross-sections
• Fitting to boundaries

– Optimization
– CNN

• Cm-reps [2 lectures by P. Yushkevich]
• Based on PDE
• Based on splines in x and half-width r
• Fitting to boundaries

• Statistics on Riemannian manifolds [Fletcher]



Srivastava boundary geometry

modulo correspondence!

• Idea is to mod out not only alignments but also 
correspondence along the boundary
– Base parameterization: x(u); reparam’n: x(g(u))

• In 2D u = q , parametrizing circle
• In 3D u =(q,f) parameterizing sphere

– Want representation independent of 
boundary parameterization

• References
– Curves: Book: A Srivastava & EP Klassen. Functional 

and Shape Data Analysis. Springer,  2016
• Be in control of Plane Curves chapter



Srivastava boundary geometry

modulo correspondence, 2

• Want representation independent of 
boundary parameterization
– So inter-object distances are between equivalence 

classes over alignment in Rn and reparameterization
– Thus we want the distance between two curves where 

one is the reparameterization or rotation of the other to 
be 0
• Srivastava and Klassen show this implies that the 

representation of curve q parameterized by g (denoted by 

(q,g)) should be 𝑞°𝛾 / ሶ𝛾
– See next slide



Srivastava boundary reparametization

representation
• Copied from Srivastava and Klassen



Srivastava boundary geometry

modulo correspondence, 3

• Want representation independent of 
boundary parameterization
– So inter-object distances are between equivalence 

classes over alignment in Rn and reparameterization 
should be

– 𝑞1 , 𝑞2 k

• ||A,B|| = distance2 between A and B
• [qi] = equivalence class of G = rep’ns qi that are 

reparameterizations g of boundary of object i
• dC is L2 norm on boundary representation (normal)
• O is orbit over reparameterizations



Srivastava boundary geometry

modulo correspondence, 3

• How is geometry involved?
– With arclength, s, parameterization, ሶ𝛾 =  the curvature 

k(s), i.e., it involves derivatives at the curve points
– So distance between 2 equivalence classes of curves:

– 𝑞1 , 𝑞2 k
–

• k(s) on boundary is used in its representation
– x variation (1st derivative wrt arclength) along 

boundary yields tangents thus normal, and their 
derivatives wrt arclength yield curvature



Srivastava Geodesics Between Boundaries
• Geodesics are according to the specified distances:

𝑞1 , 𝑞2 k

– As are statistics: 
means, covariances

• Examples of geodesics paths (from S & K):



Kurtek 2D boundary geometry in 3D

modulo correspondence

• References
– Kurtek, S., Klassen, E., Gore, J. C., Ding, Z., & Srivastava, A. (2011). 

Elastic geodesic paths in shape space of parameterized surfaces. IEEE 
transactions on pattern analysis and machine intelligence, 34(9), 
1717-1730.

– Jermyn, I. H., Kurtek, S., Klassen, E., & Srivastava, A. (2012, 
October). Elastic shape matching of parameterized surfaces using 
square root normal fields. In European conference on computer 
vision (pp. 804-817). Springer, Berlin, Heidelberg.

– Kurtek, S., Klassen, E., Ding, Z., Jacobson, S. W., Jacobson, J. L., 
Avison, M. J., & Srivastava, A. (2011). Parameterization-invariant 

shape comparisons of anatomical surfaces. IEEE Transactions on 

Medical Imaging, 30(3), 849-858.



Kurtek 2D boundary geometry in 3D

modulo correspondence, 2

• Initial map object from sphere

– From Kurtek et al., TMI 2011



Kurtek 2D boundary geometry in 3D

modulo correspondence, 3

• Want representation independent of 
boundary parameterization
– So inter-object distances are between equivalence 

classes over alignment in Rn and reparameterization

– d([q1],[q2]) = min OSO(3),g G || q1 – Og q2 ||

• d(A,B) = distance between A and B
• [qi] = equivalence class of G = rep’ns qi that are 

reparameterizations g of boundary of object i
• Og is orbit over reparameterizations
• In q1 and q2 scaled versions of the objects are used
• Minimization of the reparameterizations needs to use its 

Jacobian, which captures the  geometry through its fitted 
frames



Kurtek 2D boundary geometry in 3D

modulo correspondence, 4

• Example 1: normalization of f2 that minimizes 
distance to f1

– From Kurtek et al., TMI 2011



Kurtek 2D boundary geometry in 3D

modulo correspondence, 5

• Example 2: normalization of f2 that minimizes 
distance to f1

– From Kurtek et al., TMI 2011
– Distance metric allows statistics, e.g., mean



Kurtek 2D boundary geometry in 3D

modulo correspondence, 6

• Also has been applied to generalized cylindrical 
structures

– a) laparacopic; b) TVUS; c) MRI; d) reconstruction

– From Samir, Kurtek, Srivastava,  Canis, TMI 2014



Skeletal Representations
• Conceptually, skeletal 

representations have the following 
major advantages over other 
representations:
– Capture object width
– Capture curvature and direction of the 

object interior
– Ideally, capture division of object into 

a tree of protrusions and indentations
– Separate width and bending features

• Assigned readings:
– [Siddiqi & Pizer, Ch 3: Damon; read 

through sec. 3.3.2 
– Pizer Frontiers (google drive); read all]



Medial and Skeletal Mathematics

• Medial representation [Siddiqi & Pizer, 
Chs 2 & 3], invented by Blum
– Skeleton (medial locus) x(u,v), 

spoke length r(u,v)
• Bitangent spheres entirely in 

object interior with centers x, radii r
• Implies spoke rU, 

where U gives spoke direction
–Computed by grassfire 

[Siddiqi, Ch. 4 in Siddiqi  & Pizer]



Medial and Skeletal Mathematics, 2
• Spoke mathematics

S = rU, where U gives spoke direction

– When x has 2 spokes, 
• They have the same r value, and
• The bisector of the spokes, U0. is tangent 

to the skeleton

–xr = -U0 cos(spoke angle a from U0) 
• a =p/2 at critical points of r (max, min, 

and in 3D: saddle)

–Each S is orthogonal to the boundary
– Spoke ends b = x + rU imply the boundary 

with tolerance

• Interior and boundary positions are 
parameterized by figural coordinates (u,v,t2), 
with t2 = fraction of spoke from x(u,v)
– bt2 = (x,t2) = x + t2rU

S

S



Medial and Skeletal Mathematics, 3

• Medial skeleton form
– Commonly seen as bounded locus
– Better thought of as folded locus

with co-located pairs of x values

• At branch point, each side of medial locus 
attaches to its own side of the same side of 
host fold, except when boundary of branch 
crosses the crest of the host



Medial and Skeletal Mathematics, 3

• Medial skeleton point types in 2D
– Normal points

• Precisely 2 points of circular tangency
• Implies 2 points on skeleton, 

each with 1 spoke
with equal length with the other

– Folds where sphere osculates along crest: 
curvature maximizing principal direction
• Single spoke; 3rd order (!) sphere touching 

boundary
• Spoke is in limiting tangent plane to skeleton

– Branch curves
• Tritangent sphere tangency
• Typically many branches due to boundary noise!



Medial Mathematics, 4

• Symmetry set: all bitangent spheres

[Giblin, Ch. 2 in Siddiqi and Pizer]

• Consider the function in 2D g(u)= 

(x(u)- xm(u0))
2 + (y(u)- ym(u0))

2 - r0
2

at u = u0 with x on boundary, xm medial

• Issue is tightness of fit: the index of 
the first nonzero polynomial 
coefficient of g(u)
– Index of last zero coefficient gives 

the order
– Its singularities produce branch and 

fold types

• In 3D there will be a z term, also



Medial Mathematics, 5

Medial Singularities in 2D

• Generic Blum cases:
– Derived from symmetry set 
– Index of last zero coefficient gives the 

order
– Corresponding to number of sphere 

touches k (Ak) and order of touching j (Aj)
– Normal point ((A1)

2 )
– Branch point ((A1)

3 )
– End (fold) point: g(u) has 4th order 

coefficient nonzero: (A3)
– 4 point contact not generic in 2D



Medial Branch Point Mathematics 

in 2D
• Relation between angles between skeletal branch 

pairs and angles between 3 associated spokes

– At the branchpoint there are three spokes

– At all branchpoints the three surfaces meet non-
smoothly

– The medial locus bisects all three pairs of spokes

– Si=1,2,3 (ki/i)=0; i + qi =p, i=1,2,3; ki is boundary 
curvature



Blum Ends (Folds) in 2D

• Fold (end) atom
–Zero object angle

–Multiplicity 3 tangency, i.e., osculation

–q=0, so dr/dx = -cos(0) = -1

– Infinitely fast spoke swing in limit



Medial Mathematics in 3D

• Medial representation singularities
– Normal point (no singularity; 2D or 3D): 

A1
2 (bitangent)

– Point on branch curve (point for 2D): 
A1

3 (tritangent)
– Point on fold curve (point for 2D): 

A3 (tangent of order 3 at 1 point)
• Surprisingly 3rd order touching at crest

– 4 point contact not generic in 2D 
but is generic in 3D: 
A1

4 (see next slide)
– Ends of branch curves in 3D mix 

normal point and fold of branch : A1A3



Fins in 3D
• Generic Blum cases: 

– At normal point: (A1)
2

– At branch point: (A1)
3

– At end (fold) point (crest on surface) : A3

– At fin end point the spoke end 
on the fin side is A3 (like end) 
and the other is A1: A3 A1



The 6-Junction: (A1)
4

• Generic

• At a point only

• 4 spokes combine in 

pairs into 4 choose 2 = 6 

branches (thus 4 crests 

at ends of branches)

• 4 branch curves (and 

their crests) intersect

Elliptical basket, 

but shorten it



Radial Distance [Damon]
• t2 = radial distance = fraction of distance, along 

spoke, from skeleton to boundary
– A dilation distance from skeleton, as opposed to 

erosion distance from boundary; different because t2 is 
spoke-length proportional

• Onion skin at  x + t2 rU
– Skeleton at t2 = 0

– Boundary (smooth) at t2 = 0

– For 0 < t2 < 1, onion skin has corner along fold spokes



Radial Shape Operator [Damon]

• Swing of spoke direction U per walking direction 
(u,v) on skeleton, with (eu, ev) orthogonal 
directions
– Cf. original shape operator: swing of 

normal  N per walking direction on boundary
• But there DN, ⊥ N, is on tangent plane

– For spoke swing DU, ⊥ U, is typically not on 
skeletal tangent plane
• Project DU on skeletal tangent plane
• Then!! express projected DU in non-orthogonal coordinates 

(eu, ev , U)

• Radial shape operator Srad allows computation of 
projected U swing for any walking direction w on 
the skeletal tangent plane



Radial Shape Operator [Damon], 2

• Swing of spoke direction U per walking 
direction (u,v) on skeleton, with (eu, ev) 
orthogonal directions

• Radial shape operator Srad = 22 matrix 
of negative of (eu, ev) coefficients for 
walking directions 
w = w1eu + w1ev in skeletal tangent plane

• Srad w gives projected component swing 

of U

• Note dr(w) = Utan• w, where Utan is 

component of U in (eu, ev)

• There is a special operator for fold points



Shape Operator on Onion Skins

• Radial curvatures kr are eigenvalues of Srad
– kr <1 to prevent spoke crossing in closed object interior
– Are real even though Srad is not symmetric
– Boundary curvatures: k= kr /(1- kr)
– Similar formula for onion skins (which have same skeleton)

• So signs of radial curvatures are the same as signs of 
normal curvatures at corresponding points of all onion 
skins
– Thus convexity, concavity, cylindricality all correspond
– d(x,t2) = d( x + t2 rU) carries principal radial directions to 

principal onion skin directions



Shape Operator to Prevent 

Spoke Crossing

• The radial curvatures k𝑟𝑖 are eigenvalues of Srad

• For no spoke crossing in interior (a skeletal 
requirement), r <  1/k𝑟𝑖 for all positive radial 

curvatures and all skeletal points
– A constraint on PCA-like modes
– More likely a problem 

on concave boundary regions



Among Objects with with Spherical Topology,

The Ellipsoid: The Primordial Shape 

• Sphere is non-generic
– {spheres} is only 4-dimensional: center, radius

• Thus, it is a 0-volume subspace of 
{all shapes of spherical topology}

• It has a trivial (nongeneric) skeleton: 
surface collapsed to a point

• Ellipsoid with principal radii  
rx>ry>rz is simplest shape with a 
skeleton in the form of a folded surface
– Blum skeleton is ellipse in (x,y) plane with 

principal radii: (rx
2+ rz

2)/rx in x direction ; 
(ry

2+ rz
2)/ ry in y direction

– Crest (on ellipsoid) is an ellipse in the (x,y) plane
• It has two opposing vertices



The Crest in 3D 

• Boundary b(u,v) near b(u0,v0) and medial sphere center x are 
redescribed in p1, p2, N coordinates with origin at b(0,0)

• At end (fold) point (crest on surface) g has 0th, 1st, 2nd, and 
3rd order coefs (of a1 terms) zero, 4th order coef nonzero: A3

• Crest is relative max of k1 in p1 direction
• Crest curve is typically not orthogonal to p1 direction (the 

direction of the curvature maximum), i.e., not in p2 direction



Ellipsoidal Skeletal Coordinates

• Skeleton ellipse has a 1D skeleton in 2D 
(the “spine”), with its spokes, 
radial distances t1
– Spine has a zero-D skeleton, 

the skeletal center point
– t1 needs a sign to indicate 

side of the spine, so t1  (-1, +1)

• Cyclically around skeleton from its 
center point (q=0) is q  (-p/2, p/2]

• Each point in closed interior has a 
distinct skeletal coordinate (q, t1 , t2)



Objects with Spherical Topology 

and No Protrusions or Indentations
• Can be understood as 

diffeomorphism of the ellipsoid
– It will have at least two opposing vertices 

and at least one closed crest

• Want to carry all the basic skeletal geometry 
into the object throughout the diffeomorphism
– Skeletal properties to be maintained

• Skeletal vertices must map into skeletal vertices
– And boundary vertices into boundary vertices

• Skeletal folds must map into skeletal folds
– And Sboundary crests into boundary crests

– Straight spokes must map into straight spokes
• Ideally with t2 maintenance

– Corresponding spoke lengths should stay ~equal

• Designed to yield a strong correspondence 

across objects in a population via (q, t1 , t2)



Single Figure Objects with Spherical 

Topology via Diffeomorphism of Ellipsoid 

• Want the diffeomorphism to carry the basic 
skeletal geometry of the ellipsoid into the 
target object
– Designed to yield a strong correspondence across 

objects in a population by reflecting common 
geometry from a common ellipsoid

• Because the skeleton is designed to carry 
the curvature of the interior of  the object, 
it appears not possible for the spokes 
across the skeleton (with their
radial distance t1), which are straight 
in the ellipsoid’s skeleton to remain 
straight in target object skeleton.
– But note Taheri’s swept plane skeleton, 

in later slides



Single Figure Objects with Spherical 

Topology via Diffeomorphism of Ellipsoid, 2
• Computation of diffeomorphism from ellipsoid to object 

can be initialized with curvature-smoothing flow of 
target object boundary, which will approach ellipsoid

– Before it approaches its limiting sphere
– By conformalized mean curvature flow

• But produces poor correspondence 
for skeletal geometry maintenance

– Will collapse protrusions and indentations early
(see subfigure discussion)

– Its inverse, the desired diffeomorphism, needs to 
be modified to maintain the basic ellipsoidal 
skeletal geometry for the object (see next slide)



Conformalized Mean Curvature Flow 

of an Object Boundary

• Original idea was mean curvature flow: 
– db/dt = H(b, t) N(b, t) 

• t is time of flow

– Though it does deform boundary 
into a near ellipsoid, it collapses 
regions of high curvature into a point, 
• i.e., has singularities

• Improved method does not have 
singularities: conformalized 
mean curvature flow 
[Kazhdan]
– Changes the metric for the flow: 

• Metric is in principal coordinates
• Metric changes with deformation time t



Conformalized Mean Curvature Flow 

of an Object Boundary, 2
• Method does not have singularities: 

conformalized mean curvature flow [Kazhdan]

• But it still takes boundary mesh with 
equal-area elements into an ellipsoid 
mesh with greatly different-area elements
– Concentration of mesh elements near vertices 

and from subfigure regions, dependent on 
protrusion & indentation noise

– Does not map vertices into vertices, 
nor crests into crests

• That is, it produces poor correspondence 



Fitted Frames for 

Single-Figure Objects
• Objective

– Like fitted frames for boundary (Cartan), 
carry local geometry, 
• But here of the interior, not just the boundary
• Like boundary fitted frames, 

capture local curvatures,

– But also provide a coordinate 
system for distant geometry
• E.g., vertex direction 

vs. object center direction
• E.g., relation of centers 

of related objects

– Do it with good 
correspondence across 
the object population



Fitted Frames for Ellipsoid, 2
• Important additional capability

– Important for statistics, allows features that are 
alignment independent
• Frame rotations: local relative compass
• Location differences in local frame: local relative ruler
• Later: inter-object relations

• Avoiding difficulties of alignment, because of its 

dependence on scale



Fitted Frames for Ellipsoid, 3
• On onion skins

– Thus on skeleton (t2=0)
• Respecting side of fold, dependent on q
• And thus on spine (t1= t2=0)

– Thus on boundary (t2=1)
– In 2D normal and tangent to onion skin form frame
– In 3D

• Third frame vector f3 is 
normal to onion skin

• Second frame vector f2 is 
along fixed t1 as q varies

• f1 = f2  f3

• Allows spoke interpolation
– Rotations of frame
– r interpolation recognizing dr properties



Fitted Frames for 3D,  Single Figure 

Object of Spherical Topology

• With proper diffeomorphism, 
same definition as from ellipsoid
– In 3D

• Third frame vector f3 is 
normal to onion skin

• Second frame vector f2 is 
along fixed t1 as q varies

• f1 = f2  f3

• Approximation by 

carrying f1 and f2

by diffeomorphism

from ellipsoid



Affine Fitted Frames for 3D Single 

Figure Object of Spherical Topology

• Carry f1, f2, and f3

by diffeomorphism
from ellipsoid
• Will no longer have 

unit lengths

• Lengths form features

• Will no longer be 

mutually orthogonal

• Angles form features

Affine fitted frames to a 

hippocampus skeleton [Z Liu]



Skeletal Features for 

Single Figure Object
• Skeletal positions

– Ideally relative to
• Center point frame, or
• Neighbor skeletal position frame

• Spoke lengths
• Affine frame lengths
• Directions

– Frame vector directions
– Affine frame directions
– Ideally, all relative to local frame

• For statistics, spoke directions 
and frame rotations are 
Euclideanized using PNS Affine fitted frames to a 

hippocampus skeleton [Z Liu]



Summary of  Production of Skeletal 

Features with Correspondence
• Let rep’n of each training sample come from 

diffeomorphism of the same ellipsoid, recognizing
– Vertices and crests
– Boundaries, using CMC flow
– Spoke loci and radial lengths

• From skeleton to boundary
• From spine to skeletal fold

• And producing correspondence 
via skeletal coordinates (q, t1 , t2)
– Achieved by fitted frames via onions skins

• With directions and positions measured via local frames

• Avoids alignment by use of frames fitted to 
onion skins



S-reps

• Hold on: Diffeomorphism of a skeleton will not be medial
– That’s great because it avoids bushiness
– But now generalized skeleton, 

not necessarily precisely in the middle between point pairs 
– And with spokes to the boundary that are not necessarily 

orthogonal (“partial Blum”) 
but still do not cross and fill the interior

– Generated by optimization of “fit” to the boundary

• !!Damon: most of the medial geometry relations still work
– Radial distance
– Srad

– Radial curvatures
– Spoke interpolation
– A few of the geometric 

relations require
“partial Blum”



Discrete S-reps

• Sampled in (q, t1), typically uniformly in each
– Each has a location x, but normally understood relative 

to neighboring location in terms of local fitted frame
– Each has a spoke length r
– Each has a spoke direction U, normally understood 

relative to the fitted frame at x



Fitting  an S-rep to a Boundary Mesh

• Fitting rather than generated from boundary to fix 
branching topology

• Fitting to boundaries
– Optimization [Z Liu]

• Stage 1: approximate diffeomorphism to yield correspondence
• Stage 2: Refinement optimization: Penalties:

– 1) foremost, a term heavily penalizing crossing of the spokes, via k𝑟𝑖
» Could be a hard constraint

– 2) the deviation of the implied boundary from 
the target object boundary;

– 3) the deviation of the angle of the spokes from 
the corresponding boundary normal

– Could use the difference in corresponding spoke lengths

• Code at slicersalt.org

– Alternatives on next slides



Fitting  an S-rep to 

a Boundary Mesh, 2
• Fitting to boundaries via proper diffeomorphism

– From ellipsoid fit to approximate
ellipsoid produced by flow
• This an optimization

– By temporal stages producing                     …
reverse diffeomorphsisms to 
yield stage to stage small deformations
• Each of these is an optimization 

(see next slide)
• So it too produces approximate correspondence

• So this fitting approach also produces 
approximate correspondence



Fitting  an S-rep to 

a Boundary Mesh, 3
• By temporal stages producing 

reverse diffeomorphsisms to 
yield stage to stage …
small deformations
– Each of these is an optimization: Penalties:

• 1) foremost, a term heavily penalizing crossing 
of the spokes, via k𝑟𝑖
– Could be a hard constraint

• 2) the deviation of the implied boundaries between stages
• 3) the deviation of the angle of the spokes from 

the corresponding boundary normal
• 4) the deviation of the implied crest to the later stage crest

– Also for vertices

• 5) the difference in corresponding spoke lengths

– In late stages of development [Tapp-Hughes]



Fitting  an S-rep to a Boundary Mesh, 4

• By Multilayer Perceptron [Ninad Khargonkar ]
– Input is point cloud P from boundary mesh
– Based on PointNet++
– Trained from deformed ellipsoids

• Representation: Weights matrix W

• S=WTP

• r(sj) = Sij Wijdi; di = 

• Loss functions:
– Dist Sgrd=1to S2:

• Sgrd is initial model

– MedialitySs, closest 3 p |p-s| - r(s)
– Spread regularization: -avgij | si- sj |

• Spoke construction:



Multi-object S-reps
• Need to represent each object and 

relation between objects
– Inter-object linking surface; corres-

pondences across a population depend 

on the objects’ correspondences [Z Liu]
– Roughly bisecting linked objects, but as a 

single surface folded only once  
– Non-crossing links from each 

object to the linking surface
• Accomplished by spline fits to 

selected non-crossing links
– So far, developed only for 2 

more or less parallel objects: 
hippocampus and caudate
• But produced superior classification

than concatenation of the 2 objects



Multi-object S-reps, 2
• See multi-entity statistics, esp. correlated features
• Abutting objects [Krishna]

– Consistent fitted frames at abutting  surface regions
– Inter-object linking surface 

shares those surface regions
• With zero link length 

– So far, developed only for 
two more or less parallel objects:
• Hippocampus & caudate
• putamen & globus pallidus



Cm-reps

• Paul Yushkevich lectures
– PDE method

• Read his paper with name “PDE: on 790-6 on my google drive

– Deformation
• Read his paper with name “deformation” on 790-6 on my

google drive
• Note ability to handle multifigure (medial branching) in 3D



Multi-figure S-reps

• Connecting the Blum skeleton pieces 
into a host – subfigure tree [Katz]
– Human vision analog 

and thus multiscale 
• Only developed for 2D
• Based on saliency measure
• Uses skeletal width as a ruler
• Integrates “visual potential”, incl.

from nearby attached subfigures

• In 3D
– Explicit s-rep connections [Q Han]

• See next slide

– Use medial branching [Yushkevich]



Multi-figure S-reps, 2

• Detection via disappearance 
during smoothing flow [TBA]

• Explicit s-rep 
connections [Q Han]
– Protrusion or indentation 

has its own s-rep, truncated
– Special neck and skeleton form 

connecting subfigure 
and host figure

– Subfigure designed by 
following smoothing 
from target object



Swept-Plane S-reps [Taheri]

• Based on Damon definition of a slab
– Has continuous series of 

cut planes that do not 
intersect in the interior 
of the object

• 3D skeleton combines the 2D skeletons on 
the cut planes
– Spine formed from locus of planar center points
– Thus views object as a generalized cylinder

• Spine creation needs to satisfy Damon’s relative 
curvature condition for a generalized cylinder:



Swept-Plane S-reps [Taheri], 2

• Fitting method is in development
• The cut planes and their spine

– For each spine point
• Collinear on-skeletal spokes from spine to fold
• Each spoke from skeleton also in that plane
• So maintenance of both spoke types and radial 

lengths can be maintained by diffeomorphism 
from ellipsoid



Swept-Plane S-reps [Taheri], 3

• Fitted frames
– One element constant 

over slice

• Thus allows statistics,
e.g., hypothesis tests by 
locality and feature type
– Hypothesis test results on hippocampi 

between 6-month olds
exhibiting later autism or not
(red means significant difference)



Straightening a 

Generalized Cylinder [Ma]



Straightening a 

Generalized Cylinder [Ma], 2
• Details of step 3

– On sparsely sampled cross sections
• Minimization of frame rotation to target axis shape

– Using constraint on sampled cross sections
• Minimize local thin shell bending energy on mesh points

– Uses Laplace-Beltrami operator,
which characterizes 
change of mean curvatures



Finite Element Models Based on 

Skeletal Modeling [Crouch]

• Both host figure and protrusion subfigures
• Multiscale subdivision by spoke interpolation and 

radial distance subsampling
– Thus force application iterative: large scale to small
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