Statistics on PDMs

- PDM representation
- Alignment

- Principal component analysis for feature reduction
- Forward
- Backward
- Principal nested spheres for feature reduction
- Kendall shape space for points in 2D
- Transformation to spherical harmonics coefficients

- Find software and tutorials on slicersalt: salt.slicer.org

PDM Representation \& Alignment

- In 3D ($\left.\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}, \mathrm{y}_{\mathrm{N}}, \mathrm{z}_{\mathrm{N}}\right)$, a 3N-tuple
- 3N features, understood initially in $R^{3 \mathrm{~N}}$
- Procrustes alignment: Least sum of squares fit over coordinates
- Centering: by subtracting center of mass
- Scaling (after centering)
- Rotation so axes of best fitting ellipsoid are in the cardinal directions

Alignment of PDMs

- PDM representation
- $\left(\underline{\mathrm{x}}_{1}, \underline{\mathrm{x}}_{2}, \ldots, \underline{\mathrm{x}}_{\mathrm{N}}\right)$
- So in 3D ($\left.\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}, \mathrm{y}_{\mathrm{N}}, \mathrm{z}_{\mathrm{N}}\right)$, a 3 N -tuple
- 3 N features, understood initially in $R^{3 \mathrm{~N}}$
- Procrustes alignment
- Centering: subtract center of mass: $\underline{x}-\bar{x}$
- You have removed 3 degrees of freedom, so in $R^{3 N-3}$
- Scaling (after centering): divide by $\Sigma_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}{ }^{2}+\mathrm{y}_{\mathrm{i}}{ }^{2}+\mathrm{z}_{\mathrm{i}}{ }^{2}\right)^{1 / 2}$
- You have removed 1 additional degree of freedom, has dimension $3 \mathrm{~N}-4$
- But now $\Sigma_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}{ }^{2}+\mathrm{y}_{\mathrm{i}}{ }^{2}+\mathrm{z}_{\mathrm{i}}{ }^{2}\right)=1$, so on the unit sphere $S^{3 \mathrm{~N}-4}$
- Rotation: Rotate to eigenvectors of the $3 \times 32^{\text {nd }}$ moment matrix, whose $\mathrm{jk}{ }^{\text {th }}$ entry is Σ_{i} of the $\mathrm{j}^{\text {th }}$ among ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) times the $\mathrm{k}^{\text {th }}$ among ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- These are the axes of the best fitting ellipsoid
- Removed 3 more degrees of freedom so result on $S^{3 \mathrm{~N}-7}$

Principal Component Analysis

- For feature reduction from dimension N to much smaller
- Rotate feature coordinates such that features in the new (principal) coordinates are uncorrelated and ordered to have the first m features capture the data best, for all m
- "Best" means capture most of the population's variation
- So later principal features can be ignored, as representing mostly measurement noise
- Principal directions computed as eigenvectors of the estimated covariance matrix of the raw features
- Via AA^{T}, where rows of A are the individual data tuples with their mean subtracted
- Principal variances $\sigma_{\mathrm{k}}{ }^{2}$ computed as eigenvalues of the estimated covariance matrix
- Ordered in decreasing order of principal variances
- If \# of training samples $n<N, \sigma_{k}^{2}=0$ for $k>n-1$
- Because an n -1-dimensional hyperplane matches all n points

Forward PCA

- By increasing order of dimension of flat (Euclidean) representation
- Dimension 0: point; dimension 1: line; dimension 2: plane, ...
- Best summarizing point in feature space: $\arg \min _{\underline{x}} \Sigma_{1} d\left(\underline{x}_{i}, \underline{x}\right)^{2}$, the Fréchet mean (the ordinary average if Euclidean distance is used)
- Best summarizing line in feature space: $\arg \min _{\text {line }} \Sigma_{\mathfrak{l}} \mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \text { line }\right)^{2}$
- Passes through the best summarizing point
- The unit vector in the line is the $1^{\text {st }}$ principal component
- Best summarizing plane in feature space: $\arg \min _{\text {plane }} \Sigma_{1} \mathrm{~d}\left(\underline{x}_{\mathrm{i}}, \text { plane }\right)^{2}$
- Passes through the best summarizing line
- The unit vector orthogonal to the $1^{\text {st }}$ princ. comp't is the $2^{\text {nd }}$ principal component
- Best summarizing flat 3D space within feature space
- Passes through the best 2D representation
- The unit vector orthogonal to the best summarizing plane is the $2^{\text {nd }}$ principal component

Backward PCA

- By decreasing order of dimension of flat representation
- Dimension N-1; dimension N-2,; ...; dimension 1: point; dimension 0: point
- When going from dimension k to dimension $\mathrm{k}-1$, project the data from the dimension k space along its geodesic to the dimension $\mathrm{k}-1$ space, and the projection distance for each data point becomes the $\mathbf{k}^{\text {th }}$ principal feature
- Decreasing dimension from d to d-1 involves least squares fitting of d-1 dimensional hyperplane to data on d-dimensional hyperplance
- For Euclidean feature space, gives the same result as forward PCA
- But for feature spaces that are curved manifolds, it is better than forward PCA because the subspaces stay within the data
- It fart fails to do that for data near a great circle on a sphere

- Is backwards PCA on spheres transiting into sub-spheres
- Dimension N-1; dimension N-2,; ...; dimension 1: line; dimension 0: point (backwards mean)
- When going from dimension k to dimension $\mathrm{k}-1$, project the data from the dimension k space along its geodesic to the dimension $\mathrm{k}-1$ space, and the projection distance for each data point becomes the $\mathbf{k}^{\text {th }}$ principal feature
- Examples: 1) direction feature: on $\left.S^{2}, 2\right)$ on $S^{\mathrm{m}}, 3$) on polysphere $\left(S^{2}\right)^{\mathrm{N}}$
- On S^{2} produces 2 features; on S^{m} produces m features
- For dimension > \# of training samples n, can fit an n-1 dimensional hyperplane exactly, then start decreasing dim'ns

PNS Example: on 2-sphere

- When going from dimension k to dimension $\mathrm{k}-1$, project the data from the dimension k space along its geodesic to the dimension $\mathrm{k}-1$ space, and the projection distance for each data point becomes the $\mathbf{k}^{\text {th }}$ principal feature
- When feature is a direction, feature space is S^{2}
- Find best fitting subsphere of dimension 2-1 = 1, a circle
- On the containing sphere, and data is projected onto the circle
- Derived feature 2 for a data point is arc length (angle) from the point to the circle
- Find best fitting subsphere of dimension $1-1=0$, a point: the backward mean
- On the containing circle, and data is projected onto the point
- Derived feature 1 is also an angle

Backwards mean (light) is better than Fréchet mean (red)

PNS on Polysphere

- For tuple of N directions, data is on polysphere $\left(S^{2}\right)^{\mathrm{N}}$; apply PNS 2-sphere by 2 -sphere
- Obtaining 2N features, 2 per 2 -sphere
- There is still correlation among the feature-pairs, so a PCA on the 2 N derived feaures is needed

Principal Subspaces for Other Manifolds

- What succession of subspaces?
- In particular for polyspheres
- Possibility that all subspaces and the associated derived features are computed simultaneously rather than successively [X Pennec]: Barycentric analysis

Kendall Shape Space

- For k points in Euclidean 2-space but understood as complex numbers z_{i}
- There is extension to 3D, but complicated
- Remove translation
- For k points, understood as the complex, projective space $C P^{\mathrm{k}-2}$
- In complex numbers space, a scaling and rotation of $\mathrm{z}=\mathrm{re}^{\mathrm{i} \theta}$ is accomplished by a multiplication by $\mathrm{w}=\alpha \mathrm{e}^{\mathrm{i} \phi}$
$-\alpha$ gives the scale factor, ϕ gives the rotation angle Thus $C P^{\mathrm{k}-2}$ is $\{\mathrm{wz} \mid$ modulo w$\}$
- Also, each PDM in population is produced by removal of translation, scale, and rotation, so is on the unit sphere, so statistics are derived using distances on the unit sphere Ref: [Dryden \& Mardia, Statistical Shape Analysis, either 1998 edition (on reserve) or 2016 edition (on line)]

Statistics on Kendall Shape Space

- Distances are between inter-3-point triangles
- After the normalizations, and with points correspondence
- Procrustes distances among corresponding points
- For only 3 points for $n=2$ or 3 , $3 n-7=2$, i.e, triangles live on S^{2}
- Inter-triangle tuple distances are formed from Riemannian distances among the corresponding triangles

- Various choices for which triangles to use and how to derive the combination

Representations on the Sphere

Objects described by basis functions on the sphere. Challenge: How to get the point coordinates onto the object in the first place.

Statistics on PDMs Transformed into

Spherical Harmonics Coefficents

Each object mapped from sphere: $\underline{x}(\theta, \phi)=\Sigma_{i} \underline{b}_{i} \quad \psi^{i}(\theta, \phi)$

- Discretized with equal area spherical triangles
- Can do Euclidean statistics of the \underline{b} values over a population
- $\underline{\mathrm{b}}$ values are determined globally

Object features: coefficients of basis functions on the sphere

- Basis functions organized by frequency in latitude and longitude
- From $\underline{x}(\theta, \phi)$, coefficients easily obtained by dot product w/ basis
- For any $(\theta, \phi), \underline{x}(\theta, \phi)$ (e.g., mean) can be computed from coefficients
- Correspondence via (θ, ϕ), but empirically not always adequate

Spherical Harmonics Basis Functions

－
0
$(1)$$\theta 0000$

－ 26

米昆
\％
1
\％
光 承
\％

How to get the point coordinates on the object onto the sphere

- Equal area mapping [Brechbuehler]
- Or alternative of conformal mapping, which is angle preserving
- North pole and Greenwich meridian via best fitting ellipsoid
- Might need straightening as a preprocessing

- Possible use of s-reps implied spacing

Correspondence for PDMs

- Get initial correspondence - Entropy optimization [ShapeWorks]

Correspondence

- Approaches
- Via entropy: produce tightest ensemble $\mathrm{p}(\underline{\boldsymbol{x}})$
- Possibly also including C, S as features [Oguz]
- Registration
- Via landmarks
- thin plate splines
- diffeo guaranteeing methods

- Via richer geometry, such as skeletal

Correspondence via Entropy of PDMs

- Shapeworks [Cates, Whitaker]
- Ensemble entropy H(ensemble) should be low ($\mathrm{p}(\underline{\mathbf{x}}$) tight)
- Entropy H(point positions along boundary for each case) should be high (uniformly distributed)
- So $\min _{\underline{\mathbf{x}}}\left[\mathrm{H}_{\text {training cases }}\right.$ (geometry) $\Sigma_{\text {training cases }} \mathrm{H}$ (points on training case)]
- Entropy via PCA: H(nD Gaussian) =
 $(\mathrm{n} / 2)[1+\ln (2 \pi)+\operatorname{avg} \ln \lambda]$
- Optimize by successively doubling number of points
- Slow and often finds local optimum
- Better stats come from ridiculously inefficient entropies from s-rep [Tu, Vicory et al.]

Correspondence via

Landmark Registration

 Typically preceded by affine registration Means of interpolation of corresponding landmarks ($\underline{x}_{i}, \underline{x}_{i}^{\prime}$) to continuous deformation $\underline{x}^{\prime}(\underline{x})$

- Thin plate splines
- Methods guaranteeing diffeomorphisms via LDDMM
- Joshi
- Deformetrica
- Symmetry guaranteeing methods

Thin Plate Splines for Landmark Based Deformation

Optimum (perfect) data match, with geometric typicality (smoothness) analytically minimum

- Compute continuous deformation $\underline{x}^{\prime}(\underline{x})$ from landmarks

Warping a human skull into a chimpanzee skull.

- Fast: based on a solution to linear equations
- Typically preceded by optimum affine transformation

Thin Plate Splines Method

- Elastic warp in each variable
$-\underline{\mathbf{x}}^{\prime}(\underline{\mathbf{x}})=\underline{\mathbf{c}}+\mathrm{A} \underline{\mathbf{x}}+\Sigma_{\mathrm{j}} \underline{\mathbf{w}}_{\mathrm{j}} \mathbf{U}\left(\left|\underline{\mathbf{x}}-\underline{x}^{\mathbf{j}}\right|\right)$
- Basis functions $U\left(\left|\underline{\mathbf{x}}-\underline{x}^{j}\right|\right)$ depend on moving image's landmarks $\underline{\mathbf{x}}^{\mathbf{j}}$
- Radial bases: $\mathrm{U}(\mathrm{d})=\mathrm{d}^{2} \log \mathrm{~d}$ for $2 \mathrm{D}, \mathrm{d}^{3}$ for 3D
- Solve linearly for c, A, $\left\{\underline{\mathbf{w}}_{\mathbf{j}}\right\}$ based on $\left\{\underline{\Delta \mathbf{x}^{\mathbf{j}}}\right\}$
- Minimizing Frobenius norm: $\int \infty$ space $\Sigma_{\text {all }}$ nd partial derivatives ${ }^{2}$, so smooth
-27 terms for 3D: 9 for $\Delta x(x, y, z), 9$ for $\Delta y(x, y, z), 9$ for $\Delta z(x, y, z)$
- Not necessarily diffeomorphic; may produce folding
- Normally OK if displacements << inter-landmark spacing
- Not symmetric, not affine invariant
- Due to Bookstein: Ref: [Dryden \& Mardia, Statistical Shape Analysis, either 1998 edition or 2016 edition]

Diffeomorphic Landmark Matching

[Joshi]

Flowing images into each other. Mapping function $h(\mathbf{x})=\phi(\mathbf{x}, 1)$ given through the ODE

$$
\frac{d \phi(\mathbf{x}, t)}{d t}=v(\phi(\mathbf{x}, t)), \quad t \in[0,1], \quad \phi(\mathbf{x}, 0)=\mathbf{x}
$$

Minimize smoothness cost subj. to landmark constraints $\left(h\left(\mathbf{x}_{n}\right)=\mathbf{y}_{n}\right)$

$$
\hat{v}(\cdot)=\underset{v(\cdot)}{\operatorname{argmin}} \int_{0}^{1} \int_{\Omega}\|L v(\mathbf{x}, t)\|^{2} d \mathbf{x} d t .
$$

This is guaranteed to give a diffeomorphic h for suitable L (for example $L=I\left(-\nabla^{2}+c\right)$ works). in 2D

Correspondence via

Skeletal Mapping from Ellipsoid to Object

- Mapping via diffeomorphism such that
- Vertices map onto vertices
- Crests map onto crests
- Straight spokes map onto straight spokes

- Sampled spoke points (from skeleton to boundary) map onto each other determine diffeomorphism
- Defines a fitted frame at every sampled spoke point

[Pizer, Skeletons, Object Shape Statistics, Frontiers in Computer Science, 2023, on google drive for Pizer, Comp 790-6, will be assigned

