Statistics on PDMs

- PDM representation
- Alignment
- Principal component analysis for feature reduction
 - Forward
 - Backward
- Principal nested spheres for feature reduction
- Kendall shape space for points in 2D
- Transformation to spherical harmonics coefficients

• Find software and tutorials on slicersalt: salt.slicer.org

PDM Representation & Alignment

- PDM representation
 - $-(\underline{\mathbf{x}}_1, \underline{\mathbf{x}}_2, \dots, \underline{\mathbf{x}}_N)$
 - In 2D (x₁, y₁, x₂, y₂, ..., x_N, y_N), a 2N-tuple

- In 3D $(x_1, y_1, z_1, x_2, y_2, z_2, ..., x_N, y_N, z_N)$, a 3N-tuple
- 3N features, understood initially in R^{3N}
- Procrustes alignment: Least sum of squares fit over coordinates
 - Centering: by subtracting center of mass
 - Scaling (after centering)
 - Rotation so axes of best fitting ellipsoid are in the cardinal directions

Alignment of PDMs

- PDM representation
 - $-(\underline{\mathbf{x}}_1, \underline{\mathbf{x}}_2, \dots, \underline{\mathbf{x}}_N)$
 - So in 3D (x_1 , y_1 , z_1 , x_2 , y_2 , z_2 , ..., x_N , y_N , z_N), a 3N-tuple
 - 3N features, understood initially in R^{3N}
- Procrustes alignment
 - Centering: subtract center of mass: $\underline{x} \overline{x}$
 - You have removed 3 degrees of freedom, so in R^{3N-3}
 - Scaling (after centering): divide by $\Sigma_i (x_i^2 + y_i^2 + z_i^2)^{\frac{1}{2}}$
 - You have removed 1 additional degree of freedom, has dimension 3N-4
 - But now $\Sigma_i(x_i^2+y_i^2+z_i^2) = 1$, so on the unit sphere S^{3N-4}
 - Rotation: Rotate to eigenvectors of the 3×3 2nd moment matrix, whose jkth entry is Σ_i of the jth among (x,y,z) times the kth among (x,y,z)
 - These are the axes of the best fitting ellipsoid
 - Removed 3 more degrees of freedom so result on S^{3N-7}

Principal Component Analysis

- For feature reduction from dimension N to much smaller
- Rotate feature coordinates such that features in the new (principal) coordinates are uncorrelated and ordered to have the first m features capture the data best, for all m
 - "Best" means capture most of the population's variation
 - So later principal features can be ignored, as representing mostly measurement noise
- Principal directions computed as eigenvectors of the estimated covariance matrix of the raw features
 - Via AA^T, where rows of A are the individual data tuples with their mean subtracted
- Principal variances σ_k^2 computed as eigenvalues of the estimated covariance matrix
- Ordered in decreasing order of principal variances
- If # of training samples n < N, $\sigma_k^2 = 0$ for k > n-1
 - Because an n-1-dimensional hyperplane matches all n points

Forward PCA

- Best summarizing point in feature space: arg min_x $\Sigma_1 d(\underline{x}_i, \underline{x})^2$, the Fréchet mean (the ordinary average if Euclidean distance is used)
- Best summarizing line in feature space: arg $\min_{\text{line}} \Sigma_{1} d(\underline{x}_{i}, \text{line})^{2}$
 - Passes through the best summarizing point
 - The unit vector in the line is the 1^{st} principal component
- Best summarizing plane in feature space: arg min_{plane} $\Sigma_{1} d(\underline{x}_{i}, plane)^{2}$
 - Passes through the best summarizing line
 - The unit vector orthogonal to the 1st princ. comp't is the 2nd principal component
- Best summarizing flat 3D space within feature space
 - Passes through the best 2D representation
 - The unit vector orthogonal to the best summarizing plane is the 2nd principal component

Backward PCA

- By decreasing order of dimension of flat representation
 - Dimension N-1; dimension N-2,; ...; dimension 1: point; dimension 0: point
 - When going from dimension k to dimension k-1, project the data from the dimension k space along its geodesic to the dimension k-1 space, and the projection distance for each data point becomes the kth principal feature
 - Decreasing dimension from d to d-1 involves least squares fitting of d-1 dimensional hyperplane to data on d-dimensional hyperplance
- For Euclidean feature space, gives the same result as forward PCA
- But for feature spaces that are curved manifolds, it is better than forward PCA because the subspaces stay within the data
 - It fart fails to do that for data near a great circle on a sphere

Principal Nested Spheres (PNS) [Jung]

0.8

0.6

0.4

-0.2 -0.4 -0.6 -0.8

- Is backwards PCA on spheres transiting into sub-spheres
 - Dimension N-1; dimension N-2,; ...; dimension 1: line; dimension 0: point (backwards mean)
 - When going from dimension k to dimension k-1, project the data from the dimension k space along its geodesic to the dimension k-1 space, and the projection distance for each data point becomes the kth principal feature
- Examples: 1) direction feature: on S^2 , 2) on S^m , 3) on polysphere $(S^2)^N$
 - On *S*² produces 2 features; on *S*^m produces m features
- For dimension > # of training samples n, can fit an n-1 dimensional hyperplane exactly, then start decreasing dim'ns

PNS Example: on 2-sphere

- When going from dimension k to dimension k-1, project the data from the dimension k space along its geodesic to the dimension k-1 space, and the projection distance for each data point becomes the kth principal feature
- When feature is a direction, feature space is S^2
 - Find best fitting subsphere of dimension 2-1 = 1, a circle
 - On the containing sphere, and data is projected onto the circle
 - Derived feature 2 for a data point is arc length (angle) from the point to the circle
 - Find best fitting subsphere of dimension 1 1 = 0, a point: the backward mean
 - On the containing circle, and data is projected onto the point
 - Derived feature 1 is also an angle

0.8

0.6

0.4

-0.2

-0.6

Backwards mean (light) is better than Fréchet mean (red)

PNS on Polysphere

- For tuple of N directions, data is on polysphere (S²)^N; apply PNS 2-sphere by 2-sphere
 - Obtaining 2N features, 2 per 2-sphere
 - There is still correlation among the feature-pairs, so a PCA on the 2N derived features is needed

Principal Subspaces for Other Manifolds

- What succession of subspaces?
 - In particular for polyspheres
- Possibility that all subspaces and the associated derived features are computed simultaneously rather than successively [X Pennec]: Barycentric analysis

Kendall Shape Space

- For k points in Euclidean 2-space but understood as complex numbers z_i
 - There is extension to 3D, but complicated
- Remove translation
- For k points, understood as the complex, projective space CP^{k-2}
- In complex numbers space, a scaling and rotation of z=re^{iθ} is accomplished by a multiplication by w= αe^{iφ}
 α gives the scale factor, φ gives the rotation angle
- Thus *CP*^{k-2} is {wz| modulo w}
- Also, each PDM in population is produced by removal of translation, scale, and rotation, so is on the unit sphere, so statistics are derived using distances on the unit sphere
- Ref: [Dryden & Mardia, *Statistical Shape Analysis*, either 1998 edition (on reserve) or 2016 edition (on line)]

Statistics on Kendall Shape Space

- Distances are between inter-3-point triangles
 - After the normalizations, and with points correspondence
 - Procrustes distances among corresponding points
 - For only 3 points for n=2 or 3, 3n-7=2, i.e, triangles live on S²
- Inter-triangle tuple distances are formed from Riemannian distances among the corresponding triangles
 - Various choices for which triangles to use and how to derive the combination

Representations on the Sphere

Objects described by basis functions on the sphere.

Challenge: How to get the point coordinates onto the object in the first place.

Statistics on PDMs Transformed into Spherical Harmonics Coefficients

- Each object mapped from sphere: $\underline{x}(\theta, \phi) = \sum_i \underline{b}_i \psi^i(\theta, \phi)$
 - Discretized with equal area spherical triangles
 - Can do Euclidean statistics of the <u>b</u> values over a population
 - <u>b</u> values are determined globally

- Object features: coefficients of basis functions on the sphere
 - Basis functions organized by frequency in latitude and longitude
 - From $\underline{x}(\theta, \phi)$, coefficients easily obtained by dot product w/ basis
 - For <u>any</u> (θ,ϕ) , <u>x</u> (θ,ϕ) (e.g., mean) can be computed from coefficients
 - Correspondence via (θ, ϕ) , but empirically not always adequate

Spherical Harmonics Basis Functions

How to get the point coordinates on the object onto the sphere

- Equal area mapping [Brechbuehler]
 - Or alternative of conformal mapping, which is angle preserving
- North pole and Greenwich meridian via best fitting ellipsoid
 - Might need straightening as a preprocessing

• Possible use of s-reps implied spacing

Correspondence for PDMs

- Get initial correspondence
- Entropy optimization [ShapeWorks]

Correspondence

- Approaches

 Via entropy: produce tightest ensemble p(<u>x</u>)
 - Possibly also including C, S as features [Oguz]
 - Registration
 - Via landmarks
 - thin plate splines
 - diffeo guaranteeing methods
 - Via richer geometry, such as skeletal

Correspondence via Entropy of PDMs

- Shapeworks [Cates, Whitaker]
 - Ensemble entropy H(ensemble) should be low (p(<u>x</u>) tight)
 - Entropy H(point positions along boundary for each case) should be high (uniformly distributed)
 - So $\min_{\underline{x}} [H_{\text{training cases}}(\underline{\text{geometry}}) \Sigma_{\text{training cases}} H(\text{points on training case})]$
 - Entropy via PCA: H(nD Gaussian) = (n/2) [1+ ln(2π) + avg ln λ]
 - Optimize by successively doubling number of points
 - Slow and often finds local optimum
- Better stats come from ridiculously inefficient entropies from s-rep [Tu, Vicory et al.]

Correspondence via Landmark Registration

T

- Typically preceded by affine registration
- Means of interpolation of corresponding landmarks $(\underline{x}_i, \underline{x'}_i)$ to continuous deformation $\underline{x'}(\underline{x})$

- Thin plate splines
- Methods guaranteeing diffeomorphisms via LDDMM
 - Joshi
 - Deformetrica
 - Symmetry guaranteeing methods

– Compute continuous deformation $\underline{x}'(\underline{x})$ from landmarks

Warping a human skull into a chimpanzee skull.

- Fast: based on a solution to linear equations
- Typically preceded by optimum affine transformation

Thin Plate Splines Method

- Elastic warp in each variable
 - $-\underline{\mathbf{x}'}(\underline{\mathbf{x}}) = \underline{\mathbf{c}} + A\underline{\mathbf{x}} + \sum_{\mathbf{j}} \underline{\mathbf{w}}_{\mathbf{j}} \mathbf{U}(|\underline{\mathbf{x}} \underline{\mathbf{x}}^{\mathbf{j}}|)$
 - Basis functions $U(|\underline{x}-\underline{x}^{j}|)$ depend on moving image's landmarks \underline{x}^{j}
 - Radial bases: $U(d) = d^2 \log d$ for 2D, d^3 for 3D
- Solve linearly for c, A, {<u>w</u>_j} based on {<u>Δx</u>^j}
 Minimizing Frobenius norm: ∫^{∞ space} Σ_{all} 2nd partial derivatives², so smooth
 - 27 terms for 3D: 9 for $\Delta x(x,y,z)$, 9 for $\Delta y(x,y,z)$, 9 for $\Delta z(x,y,z)$
- Not necessarily diffeomorphic; may produce folding Normally OK if displacements << inter-landmark spacing
- Not symmetric, not affine invariant
- Due to Bookstein: Ref: [Dryden & Mardia, *Statistical Shape*] Analysis, either 1998 edition or 2016 edition]

Large Deformation Diffeometric Metric

- Consider the shape space of diffeomorphisms
- Let metric on that space measure spatial smoothness within a velocity image
- We want the shortest geodesic from Identity mapping to the diffeomorphism that maps the corresponding points onto each other
- Typically requires iterative optimization
- Implementations
 - Joshi (see next slide)
 - Deformetrica (see later in course)
 - Can also use corresponding space curves

Diffeomorphic Landmark Matching [Joshi]

T

Flowing images into each other. Mapping function $h(\mathbf{x}) = \phi(\mathbf{x}, 1)$ given through the ODE

$$rac{d\phi(\mathbf{x},t)}{dt} = v(\phi(\mathbf{x},t)), \quad t\in [0,1], \quad \phi(\mathbf{x},0) = \mathbf{x}.$$

Minimize smoothness cost subj. to landmark constraints $(h(\mathbf{x}_n) = \mathbf{y}_n)$

$$\hat{v}(\cdot) = \operatorname*{argmin}_{v(\cdot)} \int_0^1 \int_\Omega \|Lv(\mathbf{x},t)\|^2 \ d\mathbf{x} \ dt.$$

This is guaranteed to give a diffeomorphic *h* for suitable *L* (for example $L = I(-\nabla^2 + c)$ works). in 2D

Correspondence via Skeletal Mapping from Ellipsoid to Object

- Mapping via diffeomorphism such that
 - Vertices map onto vertices
 - Crests map onto crests
 - Straight spokes map onto straight spokes
- Sampled spoke points (from skeleton to boundary) map onto each other determine diffeomorphism
- Defines a fitted frame at every sampled spoke point

[Pizer, *Skeletons, Object Shape Statistics*, Frontiers in Computer Science, 2023, on google drive for Pizer, Comp 790-6, will be assigned