
Statistics on PDMs

• PDM representation
• Alignment
• Principal component analysis for feature reduction

– Forward
– Backward

• Principal nested spheres for feature reduction
• Kendall shape space for points in 2D
• Transformation to spherical harmonics coefficients

• Find software and tutorials on slicersalt: 
salt.slicer.org



PDM Representation & Alignment

• PDM representation
– (x1, x2, …, xN)

• In 2D (x1, y1, x2, y2, …, xN, yN), 
a 2N-tuple

• In 3D (x1, y1, z1, x2, y2, z2, …, xN, yN, zN), a 3N-tuple
• 3N features, understood initially in R3N

• Procrustes alignment: Least sum of squares fit 
over coordinates
– Centering: by subtracting center of mass
– Scaling (after centering)
– Rotation so axes of best fitting ellipsoid are in the 

cardinal directions



Alignment of PDMs

• PDM representation
– (x1, x2, …, xN)

• So in 3D (x1, y1, z1, x2, y2, z2, …, xN, yN, zN), a 3N-tuple
• 3N features, understood initially in R3N

• Procrustes alignment
– Centering: subtract center of mass: x− ҧ𝑥

• You have removed 3 degrees of freedom, so in R3N-3

– Scaling (after centering): divide by Si(xi
2+yi

2+zi
2)½

• You have removed 1 additional degree of freedom, has 
dimension 3N-4

• But now Si(xi
2+yi

2+zi
2)  = 1, so on the unit sphere S3N-4

– Rotation: Rotate to eigenvectors of the 33  2nd moment 
matrix, whose jkth entry is Si of the jth among (x,y,z) 
times the kth among (x,y,z)
• These are the axes of the best fitting ellipsoid
• Removed 3 more degrees of freedom so result on S3N-7



Principal Component Analysis
• For feature reduction from dimension N to much smaller
• Rotate feature coordinates such that features in the new 

(principal) coordinates are uncorrelated and ordered to have 
the first m features capture the data best, for all m
– “Best” means capture most of the population’s variation
– So later principal features can be ignored, as representing mostly 

measurement noise

• Principal directions computed as eigenvectors of the 
estimated covariance matrix of the raw features
– Via AAT, where rows of  A are the individual data tuples

with their mean subtracted

• Principal variances sk
2 computed as eigenvalues of the 

estimated covariance matrix 
• Ordered in decreasing order of principal variances
• If # of training samples n < N, sk

2 =0 for k>n-1 
– Because an n-1-dimensional hyperplane matches all n points



Forward PCA

• By increasing order of dimension of flat (Euclidean) representation
– Dimension 0: point; dimension 1: line; dimension 2: plane, …

• Best summarizing point in feature space:  arg minx Si d(xi, x)2, 
the Fréchet mean (the ordinary average if Euclidean distance is used)

• Best summarizing line in feature space: arg minline Si d(xi, line)2

– Passes through the best summarizing point
– The unit vector in the line is the 1st principal component

• Best summarizing plane in feature space: arg minplane Si d(xi, plane)2

– Passes through the best summarizing line
– The unit vector orthogonal to the 1st princ. comp’t is the 2nd principal component

• Best summarizing flat 3D space within feature space
– Passes through the best 2D representation
– The unit vector orthogonal to the best summarizing plane is the 2nd principal 

component

• …



Backward PCA

• By decreasing order of dimension of flat representation
– Dimension N-1; dimension N-2,; …;  dimension 1: point; dimension 0: point
– When going from dimension k to dimension k-1, project the data from the 

dimension k space along its geodesic to the dimension k-1 space, and
the projection distance for each data point becomes the kth principal feature

– Decreasing dimension from d to d-1 involves least squares fitting of d-1 
dimensional hyperplane to data on d-dimensional hyperplance

• For Euclidean feature space, 
gives the same result as forward PCA

• But for feature spaces that are curved 
manifolds, it is better than forward PCA
because the subspaces stay within the data
– It fart fails to do that for data near a great circle on a sphere



Principal Nested Spheres (PNS) [Jung] 

• Is backwards PCA on spheres transiting into sub-spheres
– Dimension N-1; dimension N-2,; …;  dimension 1: line; 

dimension 0: point (backwards mean)
– When going from dimension k to dimension k-1, project the data from the 

dimension k space along its geodesic to the dimension k-1 space, and
the projection distance for each data point becomes the kth principal feature

• Examples: 1) direction feature: on S2, 2) on Sm, 3) on polysphere (S2)N 

– On S2 produces 2 features; on Sm produces m features

• For dimension > # of training samples n, can fit an n-1 
dimensional hyperplane exactly, then start decreasing dim’ns



PNS Example: on 2-sphere

– When going from dimension k to dimension k-1, project the data 
from the dimension k space along its geodesic to the dimension k-1 
space, and the projection distance for each data point becomes 
the kth principal feature

• When feature is a direction, feature space is S2

– Find best fitting subsphere of dimension 2-1 = 1, a circle
• On the containing sphere, and data is projected onto the circle
• Derived feature 2 for a data point is arc length (angle) from the point to the circle

– Find best fitting subsphere of dimension 1 -1 = 0, a point: the backward mean
• On the containing circle, and data is projected onto the point
• Derived feature 1 is also an angle

Backwards mean (light) is

better than Fréchet mean (red)



PNS on Polysphere

• For tuple of N directions, data is on polysphere (S2)N; 

apply PNS 2-sphere by 2-sphere
– Obtaining 2N features, 2 per 2-sphere
– There is still correlation among the feature-pairs, 

so a PCA on the 2N derived feaures is needed



Principal Subspaces for Other Manifolds

• What succession of subspaces?
– In particular for polyspheres

• Possibility that all subspaces and the associated 
derived features are computed simultaneously 
rather than successively [X Pennec]: Barycentric 
analysis



Kendall Shape Space
• For k points in Euclidean 2-space but understood as 

complex numbers zi
– There is extension to 3D, but complicated

• Remove translation
• For k points, understood as the complex, projective space 

CPk-2

• In complex numbers space, a scaling and rotation of z=reiqis 
accomplished by a multiplication by w= aeif

– a gives the scale factor, f gives the rotation angle

• Thus CPk-2 is {wz| modulo w}
• Also, each PDM in population is produced by removal of 

translation, scale, and rotation, so is on the unit sphere, so 
statistics are derived using distances on the unit sphere

• Ref: [Dryden & Mardia, Statistical Shape Analysis, either 
1998 edition (on reserve) or 2016 edition (on line)]



Statistics on Kendall Shape Space
• Distances are between inter-3-point 

triangles
– After the normalizations, and with 

points correspondence
– Procrustes distances among 

corresponding points
– For only 3 points for n=2 or 3, 

3n-7=2, i.e, triangles live on S2

• Inter-triangle tuple distances are 
formed from Riemannian distances 
among the corresponding triangles
– Various choices for which triangles to 

use and how to derive the 
combination



Representations on the Sphere

Objects described by basis functions on the sphere.

Challenge: How to get the point coordinates onto the object in the first place.



Statistics on PDMs Transformed into 

Spherical Harmonics Coefficents
• Each object mapped from sphere: x(q,f)=Si bi i(q,f)

– Discretized with equal area spherical triangles
– Can do Euclidean statistics of the b values over a population
– b values are determined globally

• Object features: coefficients of basis functions on the sphere
– Basis functions organized by frequency in latitude and longitude
– From x(q,f), coefficients easily obtained by dot product w/ basis
– For any (q,f), x(q,f) (e.g., mean) can be computed from coefficients

• Correspondence via (q,f), but empirically not always adequate



Spherical Harmonics Basis Functions

• Objects features: coefficients of basis functions on the sphere



How to get the point coordinates 

on the object onto the sphere
• Equal area mapping [Brechbuehler]

– Or alternative of conformal mapping, which is angle preserving

• North pole and Greenwich meridian via best fitting ellipsoid
– Might need straightening as a preprocessing

• Possible use of s-reps implied spacing



Correspondence for PDMs

• Get initial correspondence
• Entropy optimization [ShapeWorks]



Correspondence

• Approaches
– Via entropy: 

produce tightest 
ensemble p(𝒙)
• Possibly also 

including C, S as 
features [Oguz]

– Registration
• Via landmarks 

– thin plate splines
– diffeo guaranteeing 

methods

• Via richer geometry, 
such as skeletal

Low surface entropy
(uniformity)

High surface entropy

Tight distr’n 
(low ensemble 

entropy)

Non-tight distr’n 
(high ensemble 

entropy)



Correspondence via Entropy of PDMs

• Shapeworks [Cates, Whitaker]
– Ensemble entropy H(ensemble) should 

be low (p(x) tight)
– Entropy H(point positions along 

boundary for each case) should be high 
(uniformly distributed)

– So minx [Htraining cases(geometry) –
Straining cases H(points on training case)]

– Entropy via PCA: H(nD Gaussian) = 
(n/2) [1+ ln(2p) + avg ln l]

– Optimize by successively doubling 
number of points
• Slow and often finds local optimum

• Better stats come from ridiculously 
inefficient entropies from s-rep [Tu, 
Vicory et al.] 



Correspondence via 

Landmark Registration
• Typically preceded by affine registration
• Means of interpolation of corresponding landmarks 

(xi, xi) to continuous deformation x(x)

– Thin plate splines
– Methods guaranteeing diffeomorphisms via LDDMM

• Joshi
• Deformetrica
• Symmetry guaranteeing methods



Thin Plate Splines for 

Landmark Based Deformation
• Optimum (perfect) data match, with geometric 

typicality (smoothness) analytically minimum 

– Compute continuous deformation x´(x) from landmarks

– Fast: based on a solution to linear equations
– Typically preceded by optimum affine transformation

Warping a human skull into a chimpanzee skull.



Thin Plate Splines Method

• Elastic warp in each variable
– x′(x)=c+Ax+Sj wjU(|x-xj|)
– Basis functions U(|x-xj|) depend on moving image’s landmarks xj

• Radial bases:  U(d) = d2 log d for 2D, d3 for 3D

• Solve linearly for c, A, {wj} based on {Dxj}
• Minimizing Frobenius norm:   space Sall 2nd partial 

derivatives2, so smooth
– 27 terms for 3D: 9 for Dx(x,y,z), 9 for Dy(x,y,z), 9 for Dz(x,y,z)

• Not necessarily diffeomorphic; may produce folding
– Normally OK if displacements << inter-landmark spacing

• Not symmetric, not affine invariant
• Due to Bookstein: Ref: [Dryden & Mardia, Statistical Shape 

Analysis, either 1998 edition or 2016 edition]



Large Deformation Diffeometric Metric 

Mapping (LDDMM) Methods

• Consider the shape space of diffeomorphisms
• Let metric on that space measure spatial smoothness within 

a velocity image
• We want the shortest geodesic from Identity mapping to the 

diffeomorphism that maps the corresponding points onto 
each other

• Typically requires iterative optimization
• Implementations

– Joshi (see next slide)
– Deformetrica (see later in course)

• Can also use corresponding space curves



Diffeomorphic Landmark Matching 

[Joshi]

in 2D



Correspondence via 

Skeletal Mapping from Ellipsoid to Object

• Mapping via diffeomorphism such that
– Vertices map onto vertices
– Crests map onto crests
– Straight spokes map onto straight spokes

• Sampled spoke points (from skeleton to boundary) map onto 
each other determine diffeomorphism

• Defines a fitted frame at every sampled spoke point

• [Pizer, Skeletons, Object Shape Statistics, 

Frontiers in Computer Science, 2023, on
google drive for Pizer, Comp 790-6, will be assigned
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