Statistics on PDMSs
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PDM representation W W wa S
Alignment |

Principal component analysis for feature reduction
— Forward
— Backward

Principal nested spheres for feature reduction
Kendall shape space for points in 2D
Transformation to spherical harmonics coefficients

Find software and tutorials on slicersalt:
salt.slicer.org



PDM Representation & Alignment

* PDM representation @
— (X3, Xp, -, Xy)
* In 2D (Xq, Y1, X2 Yo» s XN YN 2,
a 2N-tuple Yo vie

* In 3D (X, Y1, Z9s Xou Yo, Zpy oo Xpr Y Zn)s @ SN-tuple
3N features, understood initially in RSN

* Procrustes alignment: Least sum of squares fit

over coordinates

— Centering: by subtracting center of mass

— Scaling (after centering)

— Rotation so axes of best fitting ellipsoid are in the
cardinal directions



Alignment of PDMSs

* PDM representation
— (X1, Xp5 -5 XN)
* S0 1IN 3D (X1, Y1, Z1s X9, Yy Zo, -5 Xy Y Zn), @ SN-tuple
3N features, understood initially in RSN

 Procrustes alignment
— Centering: subtract center of mass: x — x
* You have removed 3 degrees of freedom, so in R3N-3
— Scaling (after centering): divide by Z.(x;?+y;?+z;%)"
* You have removed 1 additional degree of freedom, has
dimension 3N-4
 But now Zi(x>+y.2+z:?) =1, so on the unit sphere S3N-4
— Rotation: Rotate to eigenvectors of the 3x3 2" moment
matrix, whose jk™ entry is X. of the j" among (x,y,z)
times the ki among (x,y,z)

* These are the axes of the best fitting ellipsoid
« Removed 3 more degrees of freedom so result on S3N-7




Principal Component Analysis

For feature reduction from dimension N to much smaller
Rotate feature coordinates such that features in the new
(principal) coordinates are uncorrelated and ordered to have

the first m features capture the data best, for all m
— “Best” means capture most of the population’s variation
— So later principal features can be ignored, as representing mostly
measurement noise

Principal directions computed as eigenvectors of the

estimated covariance matrix of the raw features
— Via AAT, where rows of A are the individual data tuples
with their mean subtracted

Principal variances o,2 computed as eigenvalues of the
estimated covariance matrix
Ordered In decreasing order of principal variances

If # of training samples n < N, ¢,2=0 for k>n-1
— Because an n-1-dimensional hyperplane matches all n points



Forward PCA
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* By increasing order of dimension of flat (Euclidean) representation
— Dimension 0: point; dimension 1: line; dimension 2: plane, ...
- Best summarizing point in feature space: arg min, X, d(x;, X)?,
the Frechet mean (the ordinary average if Euclidean distance is used)
 Best summarizing line in feature space: arg min;;, . d(x;, line)?
— Passes through the best summarizing point
— The unit vector in the line is the 15t principal component
* Best summarizing plane in feature space: arg min,,,. X, d(x; plane)?
— Passes through the best summarizing line
— The unit vector orthogonal to the 15t princ. comp’t is the 2" principal component
« Best summarizing flat 3D space within feature space
— Passes through the best 2D representation

— The unit vector orthogonal to the best summarizing plane is the 2" principal
component



Backward PCA -~

* By decreasing order of dimension of flat representation
— Dimension N-1; dimension N-2,; ...; dimension 1: point; dimension 0: point
— When going from dimension k to dimension k-1, project the data from the
dimension k space along its geodesic to the dimension k-1 space, and
the projection distance for each data point becomes the k" principal feature
— Decreasing dimension from d to d-1 involves least squares fitting of d-1
dimensional hyperplane to data on d-dimensional hyperplance

 For Euclidean feature space,
gives the same result as forward PCA

 But for feature spaces that are curved .
manifolds, it is better than forward PCA o

because the subspaces stay within the data
— It fart fails to do that for data near a great circle on a sphere




Principal Nested Spheres (PNS) [Jung] fe
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 |Is backwards PCA on spheres transiting into sub-spheres
— Dimension N-1; dimension N-2,; ...; dimension 1: line;
dimension 0: point (backwards mean)
— When going from dimension k to dimension k-1, project the data from the
dimension k space along its geodesic to the dimension k-1 space, and
the projection distance for each data point becomes the k" principal feature
« Examples: 1) direction feature: on S2, 2) on S™, 3) on polysphere (S2)N
— On S? produces 2 features; on S™ produces m features
« For dimension > # of training samples n, can fit an n-1

dimensional hyperplane exactly, then start decreasing dim’ns



PNS Example: on 2-sphere
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— When going from dimension k to dimension k-1, project the data
from the dimension k space along its geodesic to the dimension k-1
space, and the projection distance for each data point becomes
the k" principal feature

« When feature is a direction, feature space is S?

— Find best fitting subsphere of dimension 2-1 =1, a circle
» On the containing sphere, and data is projected onto the circle
» Derived feature 2 for a data point is arc length (angle) from the point to the circle
— Find best fitting subsphere of dimension 1 -1 =0, a point: the backward mean
« On the containing circle, and data is projected onto the point
» Derived feature 1 is also an angle

Backwards mean (light) is
better than Fréchet mean (red)
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» For tuple of N directions, data is on polysphere (S%)N;
apply PNS 2-sphere by 2-sphere
— Obtaining 2N features, 2 per 2-sphere

— There is still correlation among the feature-pairs,
so a PCA on the 2N derived feaures Is needed



Principal Subspaces for Other Manifolds g

» What succession of subspaces?
— In particular for polyspheres

 Possibility that all subspaces and the associated
derived features are computed simultaneously

rather than successively [ X Pennec]: Barycentric
analysis



Kendall Shape Space

For k points in Euclidean 2-space but understood as

complex numbers z;
— There Is extension to 3D, but complicated

Remove translation

For k points, understood as the complex, projective space
Cpk-z

In complex numbers space, a scaling and rotation of z=re'®is
accomplished by a multiplication by w= e

— o glves the scale factor, ¢ gives the rotation angle

Thus CP%2 is {wz| modulo w}

Also, each PDM In population Is produced by removal of
translation, scale, and rotation, so Is on the unit sphere, so
statistics are derived using distances on the unit sphere
Ref: [Dryden & Mardia, Statistical Shape Analysis, either
1998 edition (on reserve) or 2016 edition (on line)]



Statistics on Kendall Shape Space
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Representations on the Sphere

Objects described by basis functions on the sphere.
Challenge: How to get the point coordinates onto the object in the first place.



Statistics on PDMs Transformed into

Spherical Harmonics Coefficents

« Each object mapped from sphere: x(0,6)=X. b; v'(6,d)
— Discretized with equal area spherical triangles
— Can do Euclidean statistics of the b values over a population
— b values are determined globally

* Object features: coefficients of basis functions on the sphere
— Basis functions organized by frequency in latitude and longitude
— From x(0,9), coefficients easily obtained by dot product w/ basis

— For any (0,¢), x(6,0) (e.g., mean) can be computed from coefficients
« Correspondence via (0,¢), but empirically not always adequate



Spherical Harmonics Basis Functions
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How to get the point coordinates

on the object onto the sphere

« Equal area mapping [Brechbuehler]
— Or alternative of conformal mapping, which is angle preserving

* North pole and Greenwich meridian via best fitting ellipsoid
— Might need straightening as a preprocessing

» Possible use of s-reps implied spacing



Correspondence for PDMs

 Get Initial correspondence
* Entropy optimization [ShapeWorks]




Correspondence

* Approaches
— Via entropy:
produce tightest

Tight distr’'n
(low ensemble
entropy)

ensemble p(x)
 Possibly also
Including C, S as
features [Oguz]

— Registration
* Via landmarks
— thin plate splines

— diffeo guaranteeing High surface entropy Low surface entropy
methods (uniformity)

* Via richer geometry,
such as skeletal

Non-tight distr’n
(high ensemble
entropy)

atlul



Correspondence via Entropy of PDMs
* Shapeworks [Cates, Whitaker]
— Ensemble entropy H(ensemble) should g 7
be low (p(X) tight)
— Entropy H(point positions along
boundary for each case) should be high ' ’
(uniformly distributed)
- S0 ming [Htraining cases(geometry) -~
Ziraining cases H1(POINtS on training case)] ’ ’
— Entropy via PCA: H(nD Gaussian) =

(n/2) [1+ In(2x) + avg In A]
— Optimize by successively doubling

number of points
 Slow and often finds local optimum

 Better stats come from ridiculously
Inefficient entropies from s-rep [Tu,
Vicory et al.]




Correspondence via

Landmark Registration
* Typically preceded by affine registration
* Means of interpolation of corresponding landmarks
(X;, X';) to continuous deformation x'(x)

— Thin plate splines
— Methods guaranteeing diffeomorphisms via LDDMM
* Joshi

» Deformetrica
e Symmetry guaranteeing methods



Thin Plate Splines for

L andmark Based Deformation

* Optimum (perfect) data match, with geometric
typicality (smoothness) analytically minimum

— Compute continuous deformation x’(x) from landmarks
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Warping a human skull into a chimpanzee skull.

— Fast: based on a solution to linear equations
— Typically preceded by optimum affine transformation



Thin Plate Splines Method

Elastic warp In each variable

— X/(X)=C+AX+Z; w;U(|x- xJ|)

— Basis functlons U(|X x) depend on moving image’s landmarks xJ
« Radial bases: U(d) = d? log d for 2D, d3 for 3D

Solve linearly for c, A, {w;} based on {Ax}

Minimizing Frobenius norm: |~spece ¥ 2nd partial
derivatives?, so smooth

— 27 terms for 3D: 9 for Ax(x,y,z), 9 for Ay(X,y,2), 9 for Az(X,y,z)
Not necessarily diffeomorphic; may produce folding

— Normally OK if displacements << inter-landmark spacing

Not symmetric, not affine invariant
Due to Bookstein: Ref: [Dryden & Mardia, Statistical Shape
Analysis, either 1998 edition or 2016 edition]



L arge Deformation Diffeometric Metrigh.4

Mapping (LDDMM) Methods

Consider the shape space of diffeomorphisms

et metric on that space measure spatial smoothness within
a velocity image
We want the shortest geodesic from Identity mapping to the
diffeomorphism that maps the corresponding points onto
each other

Typically requires iterative optimization

Implementations

— Joshi (see next slide)

— Deformetrica (see later in course)
 Can also use corresponding space curves



Diffeomorphic Landmark Matching
[Joshi]

Flowing images into each other. Mapping function h(x) = ¢(x, 1)
given through the ODE

/
WD — wox. ). te0] 0(x0) =x

Minimize smoothness cost subj. to landmark constraints (h(x,) =y,)

-1

v(-) = argmin/ / |Lv(x.t)||* dx dt.
v() Jo Ja

This is guaranteed to give a diffeomorphic h for suitable L (for
example L = [(—V? + ¢) works). in 2D



« Mapping via diffeomorphism such that
— Vertices map onto vertices
— Crests map onto crests
— Straight spokes map onto straight spokes

« Sampled spoke points (from skeleton to bounc ary) map onto
each other determine diffeomorphism
* Defines a fitted frame at every sampled spoke point

[Pizer, Skeletons, Object Shape Statistics,
Frontiers in Computer Science, 2023, on
google drive for Pizer, Comp 790-6, will be assigned
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