## Shape Representation Geometry and Topology

- Surface normal directions and tangent directions
- Curvatures: curves and surfaces
- Number of holes \& connected components topology
- Shape spaces
- Manifolds and geodesics
- Distance measures
- Riemannian metrics
- Figures taken from Koenderink, Solid Shape


## Mathematics: Local Surface Geometry

- Refs: O’Neill: Elementary Differential Geometry, Koenderink: Solid Shape
- Surface parameterization via (u,v): $\underline{x}(u, v)$
- Frame: In n-space, n orthogonal unit vectors ordered w/ right-handed rule
- Tangent vectors: $\mathrm{D}_{\mathrm{u}} \underline{\mathrm{x}}(\mathrm{u}, \mathrm{v}), \mathrm{D}_{\mathrm{v}} \underline{\mathrm{x}}(\mathrm{u}, \mathrm{v})$
- Normals: $\mathbf{N}(\mathrm{u}, \mathrm{v})=\mathrm{D}_{\mathrm{u}} \underline{\mathrm{x}}(\mathrm{u}, \mathrm{v}) \times \mathrm{D}_{\mathrm{v}} \underline{\mathrm{x}}(\mathrm{u}, \mathrm{v})$ normalized to unit length

- Tangent plane is spanned by $D_{u} \underline{x}(u, v), D_{v} \underline{x}(u, v)$, so it has normal $\mathbf{N}(\mathrm{u}, \mathrm{v})$
- Gaussian fitted frame: two orthogonal unit vectors $\mathbf{f}^{1}$ and $\mathbf{f}^{2}$ in tangent plane together with normal $\mathbf{f}^{3}$


## Mathematics: Local Normals Geometry

- Directional derivatives (swing) of normals
- For walking direction $\mathbf{w}, \mathrm{D}_{\mathbf{w}} \mathbf{N}(\mathrm{u}, \mathrm{v})$
- Fitted frames to surface; $\mathbf{f}_{3}=\mathbf{N}, \mathbf{f}_{1}$ and $\mathbf{f}_{2}$ in tangent plane
- With walking direction $\mathbf{w}=\mathrm{t}_{1} \mathbf{f}_{1}+\mathrm{t}_{2} \mathbf{f}_{2}$ in tangent plane, $\mathrm{D}_{\mathbf{w}} \mathbf{N}\left(\mathrm{t}_{1}\right.$ in $\mathbf{f}_{1}, \mathrm{t}_{2}$ in $\left.\mathbf{f}_{2}\right)=\mathrm{kw}+\tau \mathbf{w}^{\perp}$
- $\mathrm{k}=$ "normal curature" or "nosedive";
- $\tau=$ "geodesic torsion" or "twist"
- When walking in direction $\mathbf{w}$, $\mathbf{N}$ swings into $\mathrm{kw}+\tau \mathbf{w}^{\perp}$,
i.e., about hinge $\mathbf{c}=\left(\mathrm{kw}+\tau \mathbf{w}^{\perp}\right)^{\perp}$



# Mathematics: Local Surface Geometry 

- With $\mathbf{w}=\mathrm{t}_{1} \mathbf{f}_{1}+\mathrm{t}_{2} \mathbf{f}_{2}, \mathrm{D}_{\mathbf{w}} \mathbf{N}\left(\mathrm{t}_{1}\right.$ in $\mathbf{f}_{1}, \mathrm{t}_{2}$ in $\left.\mathbf{f}_{2}\right)=\mathrm{k} \mathbf{w}+\tau \mathbf{w}^{\perp}$
- If $\mathbf{f}_{1}=\mathbf{w}, \mathrm{D}_{\mathbf{w}} \mathbf{N}(\mathrm{u}, \mathrm{v})=\mathrm{k}_{1} \mathbf{w}+\tau_{1} \mathbf{w}^{\perp}$
- Then $\mathbf{f}_{2}=\mathbf{w}^{\perp}, \mathrm{D}_{\mathbf{w}^{\perp}} \mathbf{N}(\mathrm{u}, \mathrm{v})=\mathrm{k}_{2} \mathbf{w}+\tau_{2} \mathbf{w}^{\perp}$, but $\tau_{1}=\tau_{2}$
$\left.-D_{[f 1} \mathbf{f 2}\right]^{\mathrm{T}} \mathbf{N}(\mathrm{u}, \mathrm{v})=\mathrm{M}_{\mathrm{II}}(\mathrm{u}, \mathrm{v})[\mathbf{f} 1 \mathbf{f} 2]^{\mathrm{T}}$, with

$$
\mathrm{M}_{\mathrm{II}}=\left[\begin{array}{cc}
k_{1} & \tau \\
\tau & k_{2}
\end{array}\right] \text {, a symmetric matrix }
$$

$-\mathrm{M}_{\mathrm{II}}$ is called the "shape operator"

- At every surface point $\exists$ a tangent frame $\mathbf{p}_{1}, \mathbf{p}_{2}$
- With in each frame direction there is no twist, i.e., pure nosedive:
- Rotate $\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)$ to diagonalize $\mathrm{M}_{\mathrm{II}}$
- $\mathrm{D}_{\mathrm{p} 1} \mathbf{N}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\kappa_{1} \mathbf{p}_{1}$ and $\mathrm{D}_{\mathbf{p} 2} \mathbf{N}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\kappa_{2} \mathbf{p}_{2}$
- $\mathbf{p}_{1}$ and $\mathbf{p}_{2}$ are called "principal directions"
- $\kappa_{1}$ and $\kappa_{2}$ are called "principal curvatures"

- $\mathrm{M}_{\mathrm{II}}(\mathrm{u}, \mathrm{v})$ and $\mathbf{p}_{1}(\mathrm{u}, \mathrm{v})$ determine all curvatures at all $(\mathrm{u}, \mathrm{v})$


## Surface Curvatures and Regions

- Important summaries of curvature at a surface point
- Gaussian curvature $\mathrm{K}=\kappa_{1} \kappa_{2}=\operatorname{det}\left(\mathrm{M}_{\mathrm{II}}\right)$
- Unit sphere areal swing of normal per unit area on surface
- Sign of K:
- >0: convex or concave
- $=0$ : cylindric ("parabolic")
- <0: saddle-shaped ("hyperbolic")
- Mean curvature $\mathrm{H}=\left(\kappa_{1}+\kappa_{2}\right) / 2=\operatorname{tr}\left(\mathrm{M}_{\mathrm{II}}\right) / 2$
- Mean of the k values over all walking directions
- Sign of H distinguishes convex from concave when K>0
- Curvedness $C=\ln \left[\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)^{1 / 2}\right]$;
- Shape type $S \in[-1,1]$ : from concave through concave cylindrical through hyperbolic through convex cylindrical through convex on $\left(\kappa_{1}, \kappa_{2}\right)$ graph



## Ridges: Crests and Troughs

- Crest point
- Relative min of negative $\kappa$ (most sharply curving in a 1D convex fashion) along principal curve of associated $\mathbf{p}$

- Trough point
- Relative max of positive $\kappa$ (most sharply curving in a 1D concave fashion) along principal curve of associated $\mathbf{p}$
- From crest to trough, principal curve passes through a parabolic curve ( $\kappa=0$ )



## Mathematics: Local Surface Topology

- Number of holes in a closed surface
- Genus $g$ of the surface; does not change under diffeomorphisms
- Euler number $\chi=2-2 g$
- Sum, over points where a smooth vector field on a surface is zero, of winding number (how many counterclockwise swings the vector field swings as you pass counterclockwise around the point $=\chi$
- So principal curves on objects with spherical topology (no holes; $\chi=2$ ) must have singular pts: locally spherical ( $\kappa_{1}=\kappa_{2}$ )
- Connected components in set S: Maximal subsets of S э: between every pair of points in a connected component $\exists \mathrm{a}$ path between the points that stays within the component $=\mathrm{a}$ maximal subset of topological space $S$ that cannot be covered by the union of two disjoint open sets


## Shape Spaces

- An object representation understood as an abstract manifold (smooth surface; see next slide)
- Examples
- Any plane or hyperplane (locus of points with Euclidean metric)
- \{n points on a 2 D surface centered at zero and with average distance squared $=1\}=S^{3 \mathrm{n}-4}$
- $\{$ normal at one point on a 2 D surface $\}=S^{2}$
- $\{\mathrm{n}$ normals on a 2 D surface $\}=\left(S^{2}\right)^{\mathrm{n}}$
- $\{1$ fitted frame on a 2D surface $\}=$ hemisphere of $S^{3}=$ set of rotations SO 3

- Set of diffeomorphisms of an object (ignoring finiteness crit'n)
- Statistics are taken over manifolds
- Examples: means, covariances, principal directions


## Manifolds

- Manifold: at an open set about any point there is a best fitting tangent plane on which any derivative of deviation from the tangent plane can be taken
- Examples
- An object in 3-space if its surface is smooth

- Unit 2- sphere: all possible directions in 3 -space
- Unit 3-sphere: all possible frames (rotations) in 3-space
- Polysphere: Cartesian product of spheres, i.e., a sequence of directions
- Mapping from points p on the manifold to the tangent plane is called $\log _{\mathrm{p}}$
- Inverse is called $\operatorname{Exp}_{p}$
- $\log _{p}$ for orthogonal projection carries surface arc lengths as metric on the tangent plane


## Geodesics on a Manifold

- Geodesic
- Locally shortest path in given starting direction
- Minimization, so computation involves solving a differential equation
- Depends on the metric
- E.g., Euclidean metric on a plane
- On a manifold, for every starting point with a starting direction, there is a fixed geodesic path of increasing length
- For every pair of points on a manifold, there are 1 or more geodesics connecting the points; each has a length; the one with shortest length is the shortest connecting path



## Riemannian Manifold

- Distances squared in an infinitesimal path in some direction at some point is a sum of weighted squared distances over elements of some frame
$-D^{2}=\Sigma j w_{j} d_{j}^{2}$, with $j$ running over frame directions
- In a Euclidean (hyperplane) all weights are 1
- Metric of mapping $\operatorname{Exp}_{\mathrm{p}}$ from tangent plane at p to a smooth manifold is Riemannian
- Metric tensor specifies the distance operator
$-\mathrm{n} \times \mathrm{n}$ symmetric matrix with non-negative eigenvalues
- Eigenvectors $\mathbf{v}_{\mathrm{i}}$ form the specified frame and matrix V
- Eigenvalues $\mathrm{w}_{\mathrm{i}}$ form the weighting factors determining distance
- Metric tensor: $\mathrm{G}=\mathrm{V} \Lambda \mathrm{V}^{\mathrm{T}} ;<\mathbf{a}, \mathrm{b}>=\underline{\mathrm{a}}^{\mathrm{T}} \mathrm{G} \underline{\mathrm{b}} ;\|\underline{\mathrm{a}}\|^{2}=\mathrm{a}^{\mathrm{T}} \mathrm{G} \underline{\mathrm{a}}$
$-\mathrm{M}_{\mathrm{II}}$ forms metric tensor when mapping from a surface point to its tangent plane


## Mathematics: Local Curve Geometry

- $\underline{x}(s)$ with $s$ being arclength

Fitted (Frenet) frame
$-\mathbf{f}_{1}=$ tangent $\mathbf{T}=\mathrm{dx}(\mathrm{s}) / \mathrm{ds}$; has length 1
$-\mathbf{f}_{2}=$ normal $\mathbf{N}=$ normalized df $f_{1}(\mathrm{~s}) / \mathrm{ds}$ $=$ normalized $\mathrm{d}^{2} \underline{\mathrm{x}}(\mathrm{s}) / \mathrm{ds}^{2}$; has length 1

- Positive curvature $\kappa$ such that $\mathrm{df}_{1}(\mathrm{~s}) / \mathrm{ds}=\kappa \mathbf{N}$
- $\mathbf{f}_{1}$ and $\mathbf{f}_{2}$ span best-fitting plane, in which circle with radius $1 / \kappa$ is best-fitting circle to curve
$-\mathbf{f}_{3}=$ binormal $\mathbf{B}=\mathbf{f}_{1} \times \mathbf{f}_{2}$

- Torsion $\tau$ (signed out of plane curvature) $=-\mathrm{d} \mathbf{B} / \mathrm{ds} \bullet \mathbf{N}$ $=-\mathrm{d} \mathbf{f}_{3}(\mathrm{~s}) / \mathrm{ds} \bullet \mathbf{f}_{2}$

