

Shape Representation Geometry and Topology

- Surface normal directions and tangent directions
- Curvatures: curves and surfaces
- Number of holes & connected components topology
- Shape spaces
- Manifolds and geodesics
- Distance measures
 - Riemannian metrics

• Figures taken from Koenderink, Solid Shape

Mathematics: Local Surface Geometry

- Refs: O'Neill: Elementary Differential Geometry, Koenderink: Solid Shape
- Surface parameterization via (u,v): <u>x</u>(u,v)
- Frame: In n-space, n orthogonal unit vectors ordered w/ right-handed rule
- Tangent vectors: $D_{u}\underline{x}(u,v)$, $D_{v}\underline{x}(u,v)$
- Normals: $N(u,v) = D_u \underline{x}(u,v) \times D_v \underline{x}(u,v)$ normalized to unit length

- Tangent plane is spanned by $D_u \underline{x}(u,v)$, $D_v \underline{x}(u,v)$, so it has normal N(u,v)
- Gaussian fitted frame: two orthogonal unit vectors f¹ and f² in tangent plane together with normal f³

Mathematics: Local Normals Geometry

- Directional derivatives (swing) of normals
 - For walking direction w, $D_w N(u,v)$
 - Fitted frames to surface; $\mathbf{f}_3 = \mathbf{N}$, \mathbf{f}_1 and \mathbf{f}_2 in tangent plane
 - With walking direction $\mathbf{w} = t_1 \mathbf{f}_1 + t_2 \mathbf{f}_2$ in tangent plane, $D_{\mathbf{w}} \mathbf{N}(t_1 \text{ in } \mathbf{f}_1, t_2 \text{ in } \mathbf{f}_2) = \mathbf{k} \mathbf{w} + \tau \mathbf{w}^{\perp}$
 - k = "normal curature" or "nosedive";
 - τ = "geodesic torsion" or "twist"
 - When walking in direction w, N swings into $kw + \tau w^{\perp}$, i.e., about hinge $\mathbf{c} = (kw + \tau w^{\perp})^{\perp}$

Mathematics: Local Surface Geometry

- With $\mathbf{w} = \mathbf{t}_1 \mathbf{f}_1 + \mathbf{t}_2 \mathbf{f}_2$, $\mathbf{D}_{\mathbf{w}} \mathbf{N}(\mathbf{t}_1 \text{ in } \mathbf{f}_1, \mathbf{t}_2 \text{ in } \mathbf{f}_2) = \mathbf{k} \mathbf{w} + \tau \mathbf{w}^{\perp}$ - If $\mathbf{f}_1 = \mathbf{w}$, $\mathbf{D}_{\mathbf{w}} \mathbf{N}(\mathbf{u}, \mathbf{v}) = \mathbf{k}_1 \mathbf{w} + \tau_1 \mathbf{w}^{\perp}$
 - Then $\mathbf{f}_2 = \mathbf{w}^{\perp}$, $\mathbf{D}_{\mathbf{w}^{\perp}} \mathbf{N}(\mathbf{u}, \mathbf{v}) = \mathbf{k}_2 \mathbf{w} + \tau_2 \mathbf{w}^{\perp}$, but $\tau_1 = \tau_2$
 - $-D_{[\mathbf{f}_{1} \mathbf{f}_{2}]}TN(u,v) = M_{II}(u,v)[\mathbf{f}_{1} \mathbf{f}_{2}]^{T}$, with
 - $M_{II} = \begin{bmatrix} k_1 & \tau \\ \tau & k_2 \end{bmatrix}, \text{ a symmetric matrix}$
 - $-M_{II}$ is called the "shape operator"
- At every surface point \exists a tangent frame $\mathbf{p}_1, \mathbf{p}_2$
 - With in each frame direction there is no twist,
 - i.e., pure nosedive:
 - Rotate $(\mathbf{f}_1, \mathbf{f}_2)$ to diagonalize M_{II}
 - $D_{p_1}N(t_1 t_2) = \kappa_1 p_1$ and $D_{p_2}N(t_1 t_2) = \kappa_2 p_2$
 - \mathbf{p}_1 and \mathbf{p}_2 are called "principal directions"
 - κ_1 and κ_2 are called "principal curvatures"
 - $M_{II}(u,v)$ and $\mathbf{p}_1(u,v)$ determine all curvatures at all (u,v)

Surface Curvatures and Regions

- Important summaries of curvature at a surface point
 - Gaussian curvature $K = \kappa_1 \kappa_2 = det(M_{II})$
 - Unit sphere areal swing of normal per unit area on surface
 - Sign of K:
 - >0: convex or concave
 - -=0: cylindric ("parabolic")
 - <0: saddle-shaped ("hyperbolic")</p>

- Mean curvature H = $(\kappa_1 + \kappa_2)/2 = tr(M_{II})/2$

- Mean of the k values over all walking directions
- Sign of H distinguishes convex from concave when K>0
- Curvedness C = ln[$(\kappa_1^2 + \kappa_2^2)^{\frac{1}{2}}$];
- Shape type $S \in [-1,1]$: from concave through concave cylindrical through hyperbolic through convex cylindrical through convex on (κ_1, κ_2) graph

 $K = \frac{d\Omega}{dA}$

Ridges: Crests and Troughs

- Crest point
 - Relative min of negative κ (most sharply curving in a 1D convex fashion) along principal curve of associated p

- Trough point
 - Relative max of positive κ (most sharply curving in a 1D concave fashion) along principal curve of associated p
- From crest to trough, principal curve passes through a parabolic curve ($\kappa = 0$)

Mathematics: Local Surface Topology

- Number of holes in a closed surface
 - Genus g of the surface; does not change under diffeomorphisms
 - Euler number $\chi = 2 2g$
- Sum, over points where a smooth vector field on a surface is zero, of winding number (how many counterclockwise swings the vector field swings as you pass counterclockwise around the point

- = χ - So principal curves on objects with spherical topology (no holes; $\chi = 2$) must have singular pts: locally spherical ($\kappa_1 = \kappa_2$)
- Connected components in set S: Maximal subsets of S ∋: between every pair of points in a connected component ∃ a path between the points that stays within the component = a maximal subset of topological space S that cannot be covered by the union of two disjoint open sets

Shape Spaces

- An object representation understood as an abstract manifold (smooth surface; see next slide)
 - Examples
 - Any plane or hyperplane (locus of points with Euclidean metric)
 - {n points on a 2D surface centered at zero and with average distance squared =1 } = S^{3n-4}
 - {normal at one point on a 2D surface} = S^2
 - {n normals on a 2D surface} = $(S^2)^n$
 - {1 fitted frame on a 2D surface} = hemisphere of *S*³ = set of rotations SO3

- Set of diffeomorphisms of an object (ignoring finiteness crit'n)
- Statistics are taken over manifolds
 - Examples: means, covariances, principal directions

 $imes \dots imes$

Manifolds

- Manifold: at an open set about any point there is a best fitting tangent plane on which any derivative of deviation from the tangent plane can be taken
 - Examples
 - An object in 3-space if its surface is smooth
 - Unit 2- sphere: all possible directions in 3-space
 - Unit 3-sphere: all possible frames (rotations) in 3-space
 - Polysphere: Cartesian product of spheres, i.e., a sequence of directions
 - Mapping from points p on the manifold to the tangent plane is called Log_p
 - Inverse is called Exp_p
 - Log_p for orthogonal projection carries surface arc lengths as metric on the tangent plane

Geodesics on a Manifold

- Geodesic
 - Locally shortest path in given starting direction
 - Minimization, so computation involves solving a differential equation
 - Depends on the metric
 - E.g., Euclidean metric on a plane
 - On a manifold, for every starting point with a starting direction, there is a fixed geodesic path of increasing length
 - For every pair of points on a manifold, there are 1 or more geodesics connecting the points; each has a length; the one with shortest length is the shortest connecting path

Riemannian Manifold

- Distances squared in an infinitesimal path in some direction at some point is a sum of weighted squared distances over elements of some frame

 D²=Σj w_i d_i², with j running over frame directions
- In a Euclidean (hyperplane) all weights are 1
- Metric of mapping Exp_p from tangent plane at <u>p</u> to a smooth manifold is Riemannian
- Metric tensor specifies the distance operator
 - n ×n symmetric matrix with non-negative eigenvalues
 - Eigenvectors \mathbf{v}_i form the specified frame and matrix V
 - Eigenvalues w_i form the weighting factors determining distance
 - Metric tensor: $\mathbf{G} = \mathbf{V}\Lambda\mathbf{V}^{\mathrm{T}}$; $\langle \mathbf{a}, \mathbf{b} \rangle = \underline{\mathbf{a}}^{\mathrm{T}}\mathbf{G}\underline{\mathbf{b}}$; $||\underline{\mathbf{a}}||^{2} = \underline{\mathbf{a}}^{\mathrm{T}}\mathbf{G}\underline{\mathbf{a}}$
 - M_{II} forms metric tensor when mapping from a surface point to its tangent plane

Mathematics: Local Curve Geometry

- $\underline{\mathbf{x}}(\mathbf{s})$ with s being arclength
- Fitted (Frenet) frame
 - $-\mathbf{f}_1 = \text{tangent } \mathbf{T} = d\underline{\mathbf{x}}(s)/ds; \text{ has length } 1$
 - $-\mathbf{f}_2 = \text{normal } \mathbf{N} = \text{normalized } d\mathbf{f}_1(s)/ds$
 - = normalized $d^2\underline{x}(s)/ds^2$; has length 1
 - Positive curvature κ such that $d\mathbf{f}_1(s)/ds = \kappa \mathbf{N}$
 - f₁ and f₂ span best-fitting plane, in which circle with radius 1/κ is best-fitting circle to curve
 - $-\mathbf{f}_3 = \text{binormal } \mathbf{B} = \mathbf{f}_1 \times \mathbf{f}_2$

• Torsion τ (signed out of plane curvature) = -d**B**/ds • **N** = - d**f**₃(s)/ds • **f**₂