

Shape Representations and Statistics Course Overview

Stephen Pizer

Course Objectives

- Briefly present background math and stats
- Survey shape representations
 - -Boundary representations
 - Skeletal representations

– Diffeomorphism representations

- Multi-object representations
- Cover statistics of shape methods
 - Statistics objectives
 - Statistics on manifolds

Where and when to Participate

- Times: T Th 3:30-4:45, Pizer office hours TBA
 - Appts
 - Set up via pizer@cs.unc.edu or at 919 590 6085
 - In SN 222 or on class zoom site
- Access
 - In class: FB 007
 - Zoom: <u>https://unc.zoom.us/j/94989560766</u> passcode:205403
 - Recordings
 - Catalogue and youtube addresses: on website cs.unc.edu/shape-comp-790-6
 - Lectures on youtube
 - Including ppts, board contents, questions and answers
- For credit as UNC student or audit
 - UNC students could do an audit for credit
- Every participator should email pizer@cs.unc.edu

Background Assumed

- Multi-dimensional calculus
 - Gradient, directional derivatives
 - Hessian (2nd derivative matrix), Laplacian
- Linear algebra
 - Matrices as linear transformations, eigenvectors & values
- 1 course in mathematical probability
 - Probability densities, joint densities
 - Conditional probability densities, Bayes rule
 - Normal (Gaussian) probability distribution

How to Participate

- Ask lots of questions
 - Whether you are taking for credit or audit
 - Whether you are attending in person or via zoom
 - Via zoom, interrupt or raise virtual hand
- Keep up with the lectures
 - If you miss, look at recording immediately
 - For those taking for credit, and ideally for all, do the readings in a timely fashion
- For those taking the course for credit
 - Choose a project during first month, based on a meeting with Prof. Pizer
 - You will present your project orally and in writing at the end of the course
 - Expect an oral final exam

The Readings

- In 4 books on reserve (or buy your own)
 - JS Marron and IL Dryden, Object Oriented Data Analysis, CRC Press.2022
 - X Pennec, S Sommer, T Fletcher,
 Riemannian Geometric Statistics in Medical Image Analysis,
 Academic Press, 2020
 - G Zheng, S Li, G Szekely,
 Statistical Shape and Deformation Analysis,
 Academic Press, 2017,
 - K Siddiqi and S Pizer,
 Medial Representations: Mathematics, Algorithms and
 Applications, Springer 2008
- In many papers, on Pizer's google drive

Shape Representation Geometry and Topology

- Normal directions and tangent directions
- Curvatures: curves and surfaces
- Number of holes & connected components topology
- Shape spaces
- Manifolds and geodesics
- Distance measures

 Riemannian metrics

Shape Representation Categories

- Landmarks
- Objects
 - Boundaries
 - Points
 - Meshes
 - Normals
 - Spherical harmonics, Fourier
 - Signed distance images
 - Interiors and interior algebraic graphs
 - Skeletal models
 - Landcurves: currents
 - Multi-object representations
- Diffeos from a central example

Shape Representation by Boundary Points

- Points in correspondence (PDM); or Meshes
 - Correspondence produced by
 - Diffeomorphisms
 - Skeletal models
 - Entropy minimization
- Spherical harmonics, Fourier
- Points with normal, normals alone
- Points with tangents on landcurves (Currents)
- Normals with correspondence mod-ed out
- Signed distance images
- Distance measures
 - Riemannian metrics

Shape Representation by Skeletal Models

- Medial and skeletal mathematics
- S-reps
 - Skeletal points, spokes
 - Diffeomorphisms from ellipsoids, fitted frames
 - Taheri via swept planar cross-sections
 - Fitting to boundaries
 - Optimization
 - CNN
- Cm-reps [2 lectures by P. Yushkevich]
 - Based on PDE
 - Based on splines in \underline{x} and half-width r
 - Fitting to boundaries

Shape Representation by Deformations

- Diffeomorphisms: velocities
 - Points data
 - Currents data
 - For landcurves
 - For surfaces
 - Using CNN
- Displacements
 - Thin-plate splines
 - B-splines
 - Elastic deformations

Shape Statistics Features

- Correspondence
- Point lists (PDMs in correspondence)
- Coefficients of orthogonal bases
 - Spherical harmonics, Fourier
 - PCA bases
- Directions
 - Normals, displacements, velocities
 - Spokes in skeletal models
 Inter-object links
- Scalars: volume, width, length
- Momenta of diffeos ~ Initial geodesic direction
- Derived by PCA-like methods: PCA, PGA, PNS

Shape Statistics Objectives

Non-Euclidean features

- Classification
- Hypothesis testing

 Permutation tests (distribution-free)
- Segmentation
 - -Appearance: geometry-relative intensity features

End expiration

- -Geometric features (e.g., anatomy)
- Temporal processes
 Deformations
 - -Longitudinal

End inspiraton

Shape Statistics Preprocessing

- Commensuration: scaling and weighting
- Euclideanization
 - -Positive scalars
 - -Directions
 - -Normalized PDMs
 - -Local charts

Shape Statistics Components

- Means
 - Fréchet
 - Backwards; Barycentric
 - Extrinsic
 - Diffusion
- Modes of variation
 - Forward
 - Backwards

Backwards PNS mean (red dot) vs. Fréchet (light dot) mean

- Covariance and correlation; entropy
- Shape on Riemannian manifolds [Fletcher]
- Geodesics
 - Of diffeomorphisms
 - Probabilistic geodesics
 [Sommer]

(a) cov. diag(1,1) (b) cov. diag(2,.5) (c) cov. diag(4,.25)

Figure 10. Most probable paths on a sphere with different Brownian covariances.

Shape Statistics Methods

- Principal Component Analysis
- Principal Nested Spheres
- Principal Geodesic Analysis
- Correspondence via entropy

- SVM and DWD for separation directions
 Kernels
- Within and between entities: AJIVE
- CNNs
 - Classification
 - NeRFs (Neural Radiance Fields)
 - Production by optimization
 - Rendering

Shape Statistics Effectiveness Measures

- Generalizability, Specificity
- Cross-validation
- AUC (and ROC) for classification
- DiProPerm
- Applications
 - Objectives and methods
 - Measures of success

Course Order: First Part

- Overview of course
- Introduction to shape representations
- Mathematics background
 - Curved surface geometry, topology, ridges, Riemannian manifolds
- PDMs
 - Statistics on PDMs
 - PCA (both directions), PNS
 - Kendall shape space
- Spherical harmonics
- Correspondence
 - Via entropy
 - Registration
 - Via landmarks; thin plate splines
 - Via richer geometry

Course Order: Second Part

- Non-PDM object representations and statistics
 - Srivastava boundary normal, modulo corresp.
 - Skeletal representation (incl. [Yushkevich])
 - Medial and skeletal mathematics
 - S-reps
 - Skeletal points, spokes
 - Diffeomorphisms from ellipsoids, fitted frames
 - Taheri via swept planar cross-sections
 - Fitting to boundaries
 - » Optimization
 - » CNN
 - Cm-reps [2 lectures by P. Yushkevich]
 - Based on PDE
 - Based on splines in \underline{x} and half-width r
 - Fitting to boundaries

- Statistics on Riemannian manifolds [Fletcher]