
The Math Needed to Understand 

Image Processingcont.

• Two aspects of scale

– Levels of detail

– Gaussian apertures and spatial scale

– Intensity noise vs. scale

• Measures of edge and bar strength via derivatives

• Ridges in images, 
towards finding edges and bars

• Interpolation of discrete images

– Via convolution; via orthogonal basis functions

– Via splines

– Via least-squares approximations

• Discrete images as algebraic graphs, 
with objects as graph cuts

Little noise noisy



Loci as Height Ridges in Graphs
Ref: D. Eberly, Ridges in Image and Data Analysis, 

Kluwer

Gradient magnitude

Examples: Edges, Bars

The challenge: identify a point and direction (and for a bar, 

width) as being on an edge or bar



The dimension of a locus in M dimensions

• A smooth locus in M-dimensions has a tangent 

flat locus
– A curve (in 2D or 3D or …) has a tangent line

– A curved surface (in 3D or …) has a tangent plane
– Etc.

• The dimension, m, of the smooth locus is that 

of its tangent. Thus,
– A curve has dimension 1 (in any ambient 

dimension)

– A curved surface has dimension 2 (in any ambient 

dimension)



1D “Height” Ridges in f(z) w/ z in 2D

• M=2= dimension of space of z
– E.g., z=x; 2 = dimension of image

• Ridge is a 1D locus: m=1 in z
– To produce a ridge of dimension m, find locus of 

relative maximum is in M-m dimensions
• M-m=1, so ridge is a 1D relative maximum, in some 

direction v that varies with position x on ridge

• D1
vf(x)= 0, D2

vvf(x) < 0 (concave downward)

• The issue: what direction v ?
– A common choice: arg minv D2

vvf
• Called maximum convexity ridge: v=eigenvector of Hessian

– In Canny edge, max edge strength direction is made for v



Canny Edge Points

High threshold.Low threshold.

Original



Maximum Convexity 1D “Height” Ridges 

in 2D

• M=2= dimension of space of x
– Height ridge dimension m=1, so max in 1 direction

• Find an initial x such that at least one eigenvalue of 

Hessian D2J is negative; then march up hill to the ridge
– Take a step in a direction v, chosen as follows

• Consider eigenvector with most negative eigenvector

• To get sense to go uphill along v, look at J(x) 

– Take a step along that eigenvector, and retest until D1
vJ(x) 

=v•J(x)  changes sign

• Having found a ridge point, take a step ⊥ to the 

previous v step, and then move back up to ridge by 

the just described method



1D “Height” Ridges as Edge in 2D

• M=2= dimension of space of z
– E.g., z=x; 2 = dimension of image

• Edge is 1D Ridge of f(x) = |I(x)|

• The issue: what direction v ?
– In Canny edge, max edge strength direction 

is taken for v
• arg maxv D1

vI = gradient direction 

I(x) / |I(x)|

• So x is a ridge point if 

x = arg rel maxy [DI(y) / |I(y)||I(y)|]



2D “Height” Ridges in f(z) w/ z in 3D

• M=3= dimension of space of z
– E.g., z=x; 3 = dimension of image

• Ridge is a 2D locus: m=2
– M-m=1, so ridge is a 1D relative maximum, in 

some direction v
• D1

vf = 0, D2
vvf < 0

• The issue: what direction v ?
– A common choice: arg minv D2

vvf
• Called maximum convexity ridge: v=eigenvector of Hessian

• In Canny edge, f(x) = |I(x)|  and max edge strength direction 

I(x) / |I(x)| is made for v



1D “Height” Ridges in f(x,s) w/ x in 2D

• M=3= dimension of space of x,s
– E.g., x =dim. of image = 2; edge with its scale

• Ridge is a 1D locus in x,s: m=1
– M-m=2, so ridge is a 2D relative maximum, in 

some 2D space of directions v
• D1

vf = 0 for 2 orthog dim’ns, D2
vvf < 0 in all dim’

• The issue: what directions v ?
– A common choice: two orthog’l arg minv D2

vvf
• Called maximum convexity ridge: v=eigenvectors of Hessian

– Or Optimal scale ridges in scale space
• v1 = pure s direction; other vi, are pure space directions, by 

maximum convexity or optimal parameter



Optimal Parameter Ridges

• A geometrically defined direction for which f 

is optimum
– E.g., for edge: f = |I|; u1 = I direction, i.e., 

direction for which f is a relative maximum
• Called the Canny edge criterion 

– E.g., for bar: f= 2G(x;s)*I(x); u1 = v1 - v2

with each vi = directions of rel max of 

contribution to f
• Specified s or optimal s



Barness in Position, Width, Orientation  

in a 2D image – An Alternative*
• - vT D2f(x, s) v vs. x, s, v (4D)

• Locus gives bar position (orthogonal to the bar: 1 

dimension in x,y; width (1 dimension: s); and 

direction (orthogonal to the bar: 1 dimension: v)
– Thus a 1D ridge in 4D

– 1D Locus of high values forms a ridge

– Directions of maximization
• v (orientation)

• spatial position along v

• s

– -D2 in the subdimensional 3D must have negative 

eigenvalues (convex downward)



“Height” Ridges in f(z)

• M= dimension of space of z
– E.g., z=x; M = dimension of image

– E.g., scale space: z=x,s; M = 1+ dim of image 

– E.g., scale space and direction: z=x,s,q; 

M = dim of image + 1 + dim of image -1
• Last term gives number of angles to determine a 

direction, i.e., a point on sphere of dimension 

the same as the image

• Ridge is a subdimensional relative maximum
– To produce a ridge of dimension m, the relative 

maximum is in M-m dimensions
• When m=0, the ridge is a relative maximum



When Ridges End: 

Valleys and Connectors

• Maximum-convexity ridge: (M-m)th most 

negative eigenvalue of D2f(z0) crosses zero
– D2f(z0) becomes singular

– uM-mT D1f(z0) still = 0, since level curve cannot 

end, but graph becomes flat then convex upward 

in direction uM-m

– So-called “connector

– Later, can recross zero to become ridge or another 

eigenvalue can cross zero
• In 2D that corresponds to being a valley point



Ridge Types Other than Height Ridges

• Watershed ridges
– Divide regions where going downhill arrives at 

common relative minimum
• Split at passes

– Will not catch 

all height ridges

– Unlike height ridges, 

non-local

– There are fast algorithms to compute them

• Vertices of level curves

• Crests: ridges of surfaces, not of graphs



Ridge Types Other than Height Ridges



Watershed

Gradient magnitude image interpreted as height map.



Watershed

Direct application leads to

oversegmentation.

With merging (minimum depth)

Ref: Ole Fogh Olsen & Mads Nielsen, Multi-scale gradient magnitude 
watershed segmentation, Proc. ICIAP, Springer LNCS: Vol. 1310, 1997  


