The Math Needed to Understand
Image Processingcont:

Little noise  nois

Two aspects of scale

— Levels of detail

— (Gaussian apertures and spatial scale
— Intensity noise vs. scale

Measures of edge and bar strength via derlvatlves

Ridges in images,
towards finding edges and bars

Interpolation of discrete images

— Via convolution; via orthogonal basis functions
— Via splines

— Via least-squares approximations

Discrete images as algebraic graphs,
with objects as graph cuts




Loci as Height Ridges in Graphs

Ref: D. Eberly, Ridges in Image and Data Analysis,

Kluwer
Examples: Edges, Bars

The challenge: identify a point and direction (and for a bar,
width) as being on an edge or bar

Gradient magnitude

Figure 2.1: The MRI head image has an associated intensity surface.



The dimension of a locus In M dimensions

« A smooth locus In M-dimensions has a tangent

flat locus
— A curve (in 2D or 3D or ...) has a tangent line

— A curved surface (in 3D or ...) has a tangent plane
— Etc.

 The dimension, m, of the smooth locus Is that

of its tangent. Thus,

— A curve has dimension 1 (in any ambient
dimension)

— A curved surface has dimension 2 (in any ambient
dimension)



1D “Height” Ridges in f(z) w/ z In 2D

« M=2= dimension of space of z
—E.g., z=X; 2 = dimension of image
* RidgeisalD locus: m=1inz
— To produce a ridge of dimension m, find locus of

relative maximum is in M-m dimensions
 M-m=1, so ridge is a 1D relative maximum, in some
direction v that varies with position x on ridge
« DL f(x)= 0, D?,f(x) <0 (concave downward)
* The issue: what direction v ?

— A common choice: arg min,, D4, f
» Called maximum convexity ridge: v=eigenvector of Hessian

— In Canny edge, max edge strength direction is made for v




Canny Edge Points

Original 8.

Low threshold. High threshold.



Maximum Convexity 1D “Height” Ridges
In 2D
« M=2= dimension of space of X
— Height ridge dimension m=1, so max in 1 direction
 Find an Initial X such that at least one eigenvalue of

Hessian D4J is negative; then march up hill to the ridge

— Take a step in a direction v, chosen as follows
 Consider eigenvector with most negative eigenvector
« To get sense to go uphill along v, look at VJ(X)

— Take a step along that eigenvector, and retest until D! J(x)
=veVJ(X) changes sign

 Having found a ridge point, take a step L to the
previous v step, and then move back up to ridge by
the just described method



1D “Height” Ridges as Edge in 2D

« M=2= dimension of space of z
—E.g., z=X; 2 = dimension of image
 Edge Is 1D Ridge of f(x) = |VI(X)|

* The issue: what direction v ?

— In Canny edge, max edge strength direction

IS taken for v
« arg max, D | = gradient direction
VI(x) / [VI(x)]
« SO X Is a ridge point if
x = arg rel max, [Dy,y) /jvigylVIWI]




2D “Height” Ridges in f(z) w/ z In 3D

« M=3= dimension of space of z
—E.g., z=x; 3 = dimension of image
 Ridge is a 2D locus: m=2
—M-m=1, so ridge i1s a 1D relative maximum, In
some direction v
« DL f=0,D%,f<0
* The issue: what direction v ?

— A common choice: arg min,, D4 f
» Called maximum convexity ridge: v=eigenvector of Hessian
* In Canny edge, f(x) = |[VI(X)| and max edge strength direction
VI(x) / |VI(X)| Is made for v



1D “Height” Ridges in f(x,c) w/ X In 2D
« M=3= dimension of space of X,o
—E.g., Xx =dim. of image = 2; edge with Its scale
* Ridge isa 1D locus In X,c: m=1
— M-m=2, so ridge Is a 2D relative maximum, In
some 2D space of directions v
« DL,f =0 for 2 orthog dim’ns, D?,f< 0 in all dim’
* The Issue: what directions v ?

— A common choice: two orthog’l arg min,, D%, f
 Called maximum convexity ridge: v=eigenvectors of Hessian
— Or Optimal scale ridges in scale space

« v1 = pure o direction; other V', are pure space directions, by
maximum convexity or optimal parameter



Optimal Parameter Ridges

« A geometrically defined direction for which f
IS optimum
—E.g., for edge: f = |VI|; ut = VI direction, i.e.,

direction for which f 1s a relative maximum
« Called the Canny edge criterion

—E.q., for bar: f= V°G(X;0)*1(X); ul = v —v?
with each v! = directions of rel max of

contribution to f
» Specified o or optimal




Barness in Position, Width, Orientation

In a 2D Image — An Alternative*
« -vI D?f(X,0)V VS. X, o,V (4D)
 Locus gives bar position (orthogonal to the bar: 1
dimension in x,y; width (1 dimension: c); and

direction (orthogonal to the bar: 1 dimension: v)
— Thus a 1D ridge in 4D
— 1D Locus of high values forms a ridge

— Directions of maximization
* v (Orientation)
» spatial position along v
* O
— -D? in the subdimensional 3D must have negative
eigenvalues (convex downward)



“Height” Ridges in f(Zz)

« M= dimension of space of z
—E.g., z=x; M = dimension of image
—E.g., scale space: z=x,0; M = 1+ dim of image
—E.qg., scale space and direction: z=X,0.,0;
M = dim of image + 1 + dim of image -1
« Last term gives number of angles to determine a

direction, I.e., a point on sphere of dimension
the same as the image

* Ridge Is a subdimensional relative maximum
— To produce a ridge of dimension m, the relative

maximum Is in M-m dimensions
* When m=0, the ridge Is a relative maximum



When Ridges End:

Valleys and Connectors
« Maximum-convexity ridge: (M-m)th most

negative eigenvalue of D?f(z,) crosses zero

— D?f(z,,) becomes singular

—uM-mT DIf(z,) still = 0, since level curve cannot
end, but graph becomes flat then convex upward
in direction uM-m

— S0-called “connector

— Later, can recross zero to become ridge or another

elgenvalue can cross zero
* In 2D that corresponds to being a valley point



Ridge Types Other than Height Ridges

« Watershed ridges
— Divide regions where going downhill arrives at

common relative minimum
» Split at passes P

— Will not catch
all height ridges

— Unlike height ridges,
non-local

— There are fast algorithms to compute them

* \Vertices of level curves
 Crests: ridges of surfaces, not of graphs
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Ridge Types Other than Height Ridges
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Local maxima of height in eigendirections Local maxima of curvature along level sets



Watershed
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Gradient magnitude image interpreted as height map.



Watershed

Direct application leads to With merging (minimum depth)
oversegmentation.

Ref. Ole Fogh Olsen & Mads Nielsen, Multi-scale gradient magnitude
watershed segmentation, Proc. ICIAP, Springer LNCS: Vol. 1310, 1997



