The Math Needed to Understand Image Processing cont.

- Two aspects of spatial scale
 - Levels of detail
 - Gaussian apertures and spatial scale
- Intensity noise vs. scale
- Measures of edge and bar strength via derivatives
- Ridges in images, towards finding edges and bars
- Interpolation of discrete images
 - Via convolution; via orthogonal basis functions
 - Via splines
 - Via least-squares approximations
- Discrete images as algebraic graphs, with objects as graph cuts
Scale and Locality

• Two different factors called *spatial scale* of a sample or a basis function
 – level of detail: basis functions $\psi^{lod}(u)$
 • So 1 basis function per lod;
 e.g., $lod = \text{sinusoid wavelength}$
 – aperture (with locality): $\psi(u, u_0, \sigma; lod)$,
 • Involves an aperture weighting function centered at a location u_0
 • Determines interrelation distances,
 e.g., bar or disk widths
 • A whole set of basis functions at each scale
 – Both factors determine feature size on which to focus
Scale and Locality

• Birchfield on aperture size scale aspect
 – Section 7.1
• Birchfield on Laplacian of Gaussian
 – Section 5.4.1
• Birchfield on Gaussian derivative kernels
 – Section 5.3
• Birchfield on the Gaussian kernel
 – Section 5.2
Focusing on the right scale

• Example: white noise in a blurred image
 \[I_{\text{discrete}}(x,y) = I_{\text{discrete \& ideal}}(x,y) + \text{noise}(x,y) \]

• Choose aperture size to delete or attenuate undesired scales

• Choose level of detail to focus on lods with good signal-to-noise, i.e., large and moderate lods

• Example: remove unwanted detail

• Example: bar or blob width
Apertures and Levels of Detail

- Apertures
 - Global
 - Local
 - Gaussian and its derivatives
 - Aperture scale is σ
 - Splines
 - Aperture scale is size of data support for a patch
 - With orthogonality:
 - Gabor functions: sinusoid under Gaussian with aperture scale σ
 - Orthogonal wavelets

- Levels of detail
 - Sinusoid wavelength (also for Gabor)
 - Derivative order
 - Spline data grid spacing
 - Orthogonal wavelet binary decimation level
Properties desired of an aperture

• Unbiased re spatial scaling, translation, rotation
• Cascading apertures gives a legal aperture
• Do not create structure, only eliminate it
• Have finite integral

• The only continuous aperture that does all of that is the Gaussian!
 • Book exists as a Mathematica program (can chg the figures)
Non-creation of structure

- No new level curves very nearby
 - Of intensity
 - Of derivatives of intensity

- Equivalently, upon application of aperture
 - local maxima disappear or decrease in intensity
 - local minima disappear or increase in intensity

- Not equivalent to no creation of local maxima or minima
 - Consider taut curtain between mountain-tops
Properties of the Gaussian

- Separable
- Convolution or product of 2 Gaussians is Gaussian
- Rotationally invariant; i.e., isotropic
 - Also ellipsoidal form is available
- Is its own Fourier transform, but reciprocal std deviation
- Central limit theorem: \(\ast \sum_{i=1}^{n} h_i \) is Gaussian in the limit
- Maximum entropy: most uncertain with fixed variance
- Diffusion (heat equation): \(\frac{\partial f(x,t)}{\partial t} = \nabla^2 f \) with \(f(x,0)=\delta(x) \) has Gaussian as solution (psf, convolution kernel)
- Scale (apertures) that
 - are agnostic re rotation, translation, and magnification
 - compose successive scale changes into a single scale change
 - do not create structure by increasing scale
- Result of Brownian motion
The Gaussian

- Formula:
 - Isotropic: \((2\pi\sigma^2)^{-n/2} \exp\{-\frac{1}{2}[|x-\mu|/\sigma]^2\}\)
 - General: \((2\pi)^{-n/2} |\text{det } \Sigma|^{-1/2} \exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}\)

- Eigenvectors of \(\Sigma\) are principal directions
- \((\text{Eigenvalues of } \Sigma)^{1/2} \propto \text{principal radii}\)
White Intensity Noise vs. Image

- If the noise in each pixel is uncorrelated with the noise in any other pixel, the noise is called white.
 - Called white because for orthogonal basis images the expected square value of each basis image coefficient of noise instances is constant, i.e., does not vary with lod.
- Scenes tend to be close to white, i.e., over a population have the same average squared orthogonal basis image coefficients.
- Images are scenes \ast psf of camera, and transfer function magnitude falls with frequency.
- The signal (image) to noise falls as lod falls, eventually having noise dominate past some lod.
 - Implies amplification of basis function coefficients as lod decreases (e.g., frequency increases) needs to turn into damping below some lod.
How to Compute a First Derivative of M-D Image

• Always via derivative of Gaussian
 – Will damp lod components below some threshold

• In a non-cardinal direction
 – Compute the M cardinal derivatives in the gradient
 • If done via freq. domain (see below), multiply amplitudes (or both real and imaginary parts) by M-D Gaussian once
 – Dot product result with direction

• In a cardinal direction, say x
 – If Gaussian’s $\sigma < 3$ pixels, operate in space domain
 • Compute Gaussian kernel and apply that narrow (<8 pixels wide) weighting function pixel by pixel
 – Otherwise, take FFT of image and operate in frequency domain
 • Multiply Gaussian-updated amplitudes (or real and imaginary parts) by ν_x, and if necessary by the 2π that is part of $2\pi i$
 • To effect multiplication by $i = e^{i\pi/2}$, add $\pi/2$ to every phase in FFT(I) (or change sign of imaginary party of FFT(I) and then swap real and imaginary parts of the result

• If in another cardinal dir., say y, only change ν_x to ν_y
Splines

- Smoothly connected patches
- Typically a polynomial in each patch
- Local support by nearby grid elements
The Part of the Course Covered on the Midterm Ends Here
Scale Situations in Various Sampled Geometric Analysis Approaches

<table>
<thead>
<tr>
<th>Global coef for each level of detail</th>
<th>Multidetail feature</th>
<th>Detail residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples: Fourier coeffs, global principal components</td>
<td>image pixels boundary points, dense displacements</td>
<td>orthogonal wavelets Gabor, Gauss deriv, recursive splines</td>
</tr>
</tbody>
</table>

![Diagram showing scale situations in various sampled geometric analysis approaches.](image)
Polynomial Basis Functions w/ Locality

• Splines: patchwise fitting
 – Approximating
 • E.g., B-splines, related to wavelets

\[
Q_i(t) = \frac{1}{6} [(t-t_i)^3 (t-t_i)^2 (t-t_i) 1]
\]

\[
\begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
P_{i-1} \\
P_i \\
P_{i+1} \\
P_{i+2}
\end{bmatrix}
\]

• Above is in each dimension; separable
• \(t_i \) integers, (\(t-t_i \) \(\in [0,1] \))
 – Interpolating: Global
 – Approximating: Locality (aperture) by control point (\(P_i \)) spacing
Some Uses of Splines

• Smooth bias fields for images
 – Subtract it

• Smooth sensitivity fields for images
 – Divide by it

• Smooth displacement fields for distortion
 – Separate splines for $\Delta x(x), \Delta y(x), \Delta z(x)$
 – Also used to compute deformable registrations
 • Optimize Δx control point sets
Representations with Locality

- With parametrized representation
 - With \(u \) as parameter(s)
 - With \(f = x \) or \(I \) or … as function of \(u \)

- Need \(f(u, \sigma) = \sum_{\text{lod}} a(\text{lod}, u_0, \sigma) \psi^{\text{lod}}(u, u_0, \sigma) \)
 - \(u \) is location
 - \(\sigma \) is aperture size (typically std dev of Gaussian), \(u_0 \) is aperture center
 - \(\text{lod} \) is level of detail
 - For Fourier it is wavelength \(1/\nu \) for frequency \(\nu \)
 - For derivative, it is order
 - Not too noisy if \(\sigma \) is well chosen and order < 6
 - For orthogonal wavelet it is level of decimation
References for Representations with Locality

• B-splines
 – Birchfield, section 4.6.5
 – E. Cohen, R. Riesenfeld, G. Elber. *Geometric Modeling with Splines*

• Gabor wavelets
 – Birchfield, section 6.6.7

• Orthogonal wavelets
 – Birchfield, section 6.6.5
Basis Functions with Locality

• Gabor functions: sinusoids under the Gaussian [ref Wechsler: *Comp’l Vision*]
 – Like derivatives of Gaussian, with $\nu \propto$ derivative order
 – Wavelength $1/\nu \propto \sigma$
 – Sampling $\propto \sigma$

• Orthogonal wavelets
 – Interscale residues
 – Orthogonality across & within scales

† The 20th order Gaussian derivative
Separability vs. Isotropy with local basis images

• Separability means apply in one coordinate, then in the other on the result
• Isotropy implies lack of bias toward orientation
• Gabor functions applied separably and derivatives of Gaussians applied separably are isotropic
• Splines and orthogonal wavelets are applied separably but that does not produce isotropy
Basis Functions with Locality: Derivatives of Gaussian

- [ref: ter Haar Romeny book]
- Order of derivative is LOD
 - Not orthogonal as basis functions
 - Sampling $\propto \sigma$ (see later slide on derivatives)
- Not too different in effect from Gabor wavelets
- Localized Taylor series
- Diffusion equation and Taylor series in $t (=\sigma^2/2)$ yields Laplacian-based local multi-scale approximation
Pyramids: Images in Scale Space

- Gabor $\Delta_\sigma I = G(x;\sigma)*I(x) - G(x;2\sigma)*I(x)$
 $= [G(x;\sigma) - G(x;2\sigma)]*I(x)$
 - As scale σ increases, the sampling distance can increase proportionally

- $G(x;\sigma) - G(x;2\sigma) \approx \nabla^2 G(x;\sigma)$

- As you increase scale by some constant factor, you produce an image as a function of x (with adjusted sampling) and σ: the Laplacian pyramid
 - Small scale to large

- If you combine the Laplacian effect with the orthogonal wavelet, you get orthogonal wavelet pyramid
Uses of basis functions with locality

• Three dimensions
 – Location
 – Aperture size
 – LOD, often best \propto aperture size

• Choosing the aperture size and LOD
 – PCA (SVD)
 – Biggest average response(s) per location

• Edgeness and barness operators
 – Edgeness: directional 1st derivative with appropriate aperture: cf. edge slope
 – Barness: directional 2nd derivative with appropriate aperture: cf. bar width
Loci as Height Ridges in Graphs
Ref: D. Eberly, *Ridges in Image and Data Analysis*, Kluwer

Examples: Edges, Bars (ridges will come in next course section)

The challenge: identify a point and direction (and for a bar, width) as being on an edge or bar

Figure 2.1: The MRI head image has an associated intensity surface.
Edgeness and barness operators

• Edgneness
 – Gradient with aperture: \(D^1 f(x, \sigma) = \nabla f(x, \sigma) = \left[\frac{\partial G(x, \sigma)}{\partial x_1} f, \ldots, \frac{\partial G(x, \sigma)}{\partial x_n} f \right]^T \)
 • Gives direction of maximum edgness
 • Magnitude gives amount of edgeness in that dir.
 – Directional derivative with aperture = edgeness in the \(v \) direction = \(v \cdot \nabla f(x, \sigma) \)

• Barness
 – Hessian with aperture: \(D^2 f(x, \sigma) = M \times M \) matrix
 \[\left[\frac{\partial^2 G(x, \sigma)}{\partial x_i \partial x_j} \right] \]
 – Barness: directional 2\(^{nd}\) derivative w/ appropriate aperture in the \(v \) direction = \(-v^T D^2 f(x, \sigma) v \)
Optimal Barness Direction

- $\text{Max}_v [- v^T D^2 f(x, \sigma) v]$
 - $D^2 f$ is symmetric
 - Thus $v = \text{eigenvector of } D^2 f$ with most negative eigenvalue
 - Thus, barness is the negative of the most negative eigenvalue of $D^2 f$
Edgeness and Barness Seen as Matched Filters

- Edgness via $\nabla f(x, \sigma) = v \cdot \nabla f(x, \sigma)$ with v being unit vector in gradient direction.

- $\text{Max}_{|v|=1}[- v^T D^2 f(x, \sigma) v]$ attained with v being unit eigenvector with most negative eigenvalue.

- Kernel corresponding locally to edge or bar respectively matches the edge itself.
 - $\text{Max}_{|h|=1} h(x)^* q(x)|_{x=0}$ attained when $h(x) = q(x)/|q(x)|$.
Aperture size for edgeness and barness operators (and other derivatives)

• Derivatives are not commensurable
 – 1st derivatives have units of intensity/mm
 – 2nd derivatives have units of intensity/mm\(^2\)
 – Etc.

• Make them commensurable by multiplying \(kth\) derivative by aperture’s \(\sigma^k\)
 – (or \((c\sigma)^k\))
 – Make them comparable via error propagation behavior (see next slide)
Error Propagation of σ^k-Scaled Derivatives

- 1D
- Relative to error in 0^{th} derivative
- Displayed as log (so at order 0, is zero)
Error Propagation under Convolution with Gaussian

• Noise level (standard deviation) is multiplied by $[\int h^2(x) \, dx]^{1/2}$, with h the Gaussian
 – That is, in M dimensions output noise level is divided by $\sigma^{M/2}$

• Thus change propagation by choosing σ for each derivative order to achieve the desired level of propagation
White Intensity Noise vs. Level of Detail

- \(I_{\text{noisy}}(x) = I_{\text{noise-free}}(x) + \text{noise}(x) \)
- In any orthonormal function basis, noise that is uncorrelated between pixels has constant variance in every basis function coefficient.
- In that basis, as lod increases, the coefficient \(a_{\text{noise-free}}(\text{lod}) \) of \(I_{\text{noise-free}}(x) \) roughly falls like a Gaussian.
- Thus signal-to-noise = \(a_{\text{noise-free}}(\text{lod}) / \sqrt{\text{var}(a(\text{lod}))} \) falls as lod increases, eventually becoming \(< 1\).
Uses of Spatial Scale

- Measurements at an appropriate chosen scale
- Optimality in scale space: best scale at each location
- Decomposition into residues at various scales

LOD

One orthonormal basis function coefficient per box location
Comparative Properties of Main Parametrized Decompositions

<table>
<thead>
<tr>
<th></th>
<th>Locality</th>
<th>Invariances</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourier</td>
<td>--</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Gaussian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>derivatives</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Wavelets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>& Splines</td>
<td>+</td>
<td>--</td>
<td>+</td>
</tr>
</tbody>
</table>