The Math Needed to Understand Image Processing

• Representation of images as Taylor series
 – Thus computation of image derivatives

• Invariant operators: to shift, rotation, scale
 – T is invariant to G if for all images I, T(G(I))=G(T(I))

• Shift-invariant, linear operators: G = translation
 – Linear operators T have property that for all images, I, J and scalars α, β,
 • T(αI+βJ) = αT(I)+βT(J)
 • Or equivalently, T(I+J) = T(I)+T(J) and T(αI) = αT(I)
 – We will see that such operators have a close connection with convolution
 – **All derivatives are linear and shift-invariant**
 • By all derivatives, the following are included
 – All orders, directional derivatives, partial derivatives, the Laplacian
 » The Laplacian \(\nabla^2 I = \sum_{i=1}^{\# \text{dims}} \frac{\partial^2 I}{\partial x_i^2} \) for any orthogonal coord sys
Spatial Derivatives and Edges

- First derivatives (w.r.t. space) are important indicators of edges and bars
 - The 2D image \([\partial I(x,y)/\partial x]^2 \) (as a function of x and y) is a strong indicator of a vertical edge
 - The image \([\partial I(x,y)/\partial y]^2 \) is a strong indicator of a horizontal edge
 - The image \([D_u I(x,y)]^2 \) is a strong indicator of an edge with normal direction \(u \)
Spatial Derivatives and Bars and Blobs

- Second derivatives (w.r.t. space) are important indicators of narrow bars
 - The image \(\left[\frac{\partial^2 I(x,y)}{\partial x^2} \right]^2 \) is a strong indicator of the center of a narrow vertical bar
 - The image \(\left[\frac{\partial^2 I(x,y)}{\partial y^2} \right]^2 \) is a strong indicator of a narrow horizontal bar
 - The image \(\left[D^2_{uu} I(x,y) \right]^2 \) is a strong indicator of a narrow bar with edge-normal direction \(u \)
- \(|\nabla^2 I|^2 \) is a strong indicator of a circular blob
Spatial Derivatives via Tensors

- Every directional spatial derivative of order k at \mathbf{x}_0 of $f(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^n$ is captured by a k^{th} order symmetric tensor with the entry with index $i_1i_2...i_k$ being given by $\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} ... \partial x_{i_k}}(\mathbf{x}_0)$
 - x_j is the j^{th} of the scalar variables in \mathbf{x}

- A k^{th} order tensor $\in \mathbb{R}^n$ is an $n \times n \times \ldots \times n$ (k times) array
 - A zero order tensor is a 1-entry (1×1) array
 - A first order tensor is an $n \times 1$ array (column vector)
 - A second order tensor is an $n \times n$ array (matrix)
 - A third order tensor is an $n \times n \times n$ array
 - Etc.

- Pre- (post-) multiplying a k^{th} order tensor by a row (column) vector yields a $(k-1)^{th}$ order tensor obtained by taking the dot-product between that vector and each of the tensor columns with first (last) index
 - For example if $k=1$, the result is a 1-entry (0^{th} order) tensor obtained by taking the dot product of the vector and the column vector forming the 1-tensor
 - For example if $k=2$, the result of a pre-multiplication by a vector is a 1-tensor (vector) with its i^{th} element obtained by taking the dot product of the vector and the i^{th} column vector of the 2-tensor (matrix); and the result of a post-multiplication by a vector is a 1-tensor (vector) with its i^{th} element obtained by taking the dot product of the vector and the i^{th} row vector of the 2-tensor (matrix)
Taylor Series and Spatial Derivatives

- Taylor series express an image with local accuracy as a polynomial whose coefficients are derivatives normalized by factorials
 - In 1D, \(I(x) \approx I(x_0) + \sum_{k=0}^{n} \frac{d^k I/dx^k(x_0)}{k!} (x-x_0)^k \)
- For an image of arbitrary dimension \(M \), e.g., 2D (\(M=2 \)) or 3D (\(M=3 \)), all \(k \)th derivative values at a point \(x_0 \) are captured by the \(k \)-tensor \(D^k I(x_0) \), a linear operator represented by an array of size \(M \times M \times \ldots \times M \) (with dimension \(k \)) with the array element \(i_1, i_2, \ldots, i_k \) being \(\partial^k I/\partial x_{i_1}\partial x_{i_2} \ldots \partial x_{i_k}(x_0) \)
 - Examples:
 - for \(k=1 \), \(D^1 I(x_0) \) is the gradient vector with entries \(\partial I/\partial x_i \)
 - for \(k=2 \), \(D^2 I(x_0) \) is the Hessian matrix with entries \(\partial^2 I/\partial x_{i_1}\partial x_{i_2} \)
- The \(k \)th directional derivative at \(x_0 \) w.r.t. to the directions \(U = u_{i_1} u_{i_2} \ldots u_{i_k} \) is a scalar obtained by the successive linear operations of vector-product of \(D^k I(x_0) \) by \(u_{i_j} \) by the \(k \)-tensor \(D^k I(x_0) \), \(j = 1, 2, \ldots, k \) (or in any other order)
 - Call this operation \(U \bullet D^k I(x_0) \)
 - The order of the operations does not matter; all the operations but the last are on the left (mult. by \(u^T \)), but for \(k>1 \) the last must be on the right (mult. by \(u \))
Taylor Series and Spatial Derivatives

- Taylor series express an image **locally** as a polynomial whose coefficients are derivatives normalized by factorials
 - In 1D $I(x) \approx I(x_0) + \sum_{k=1}^{n} \left[\frac{d^k I}{dx^k}(x_0) / k! \right] (x-x_0)^k$

- For an image of arbitrary dimension M, e.g., 2D ($M=2$) or 3D ($M=3$), the Taylor series approximation for $I(x)$ with x near x_0 is

 $$I(x) \approx I(x_0) + \sum_{k=1}^{n} \sum_{\text{all } M^k \text{ choices of } i_1, i_2, \ldots, i_k} \left[U_j \bullet D^k I(x_0) / k! \right] \times \prod_{j=1}^{k} (x_{i_j} - x_{0_{i_j}}),$$

 where each i_m is chosen from 1, 2, ..., M, $\sum_{j=1}^{n} i_j = k$, and $U_j = u_{i_1} u_{i_2} \ldots u_{i_k}$
Taylor Series and Spatial Derivatives

- Taylor series express an image **locally** as a polynomial whose coefficients are derivatives normalized by factorials
 - Alternative form to

 \[
 I(x) \approx I(x_0) + \sum_{k=0}^{n} \frac{1}{k!} \sum_{\text{all } M_k \text{ choices of } i_1, i_2, \ldots, i_k} \left[U_j \bullet D^k I(x_0) \right] \times \prod_{j=1}^{k} (x_{ij} - x_{0ij}),
 \]
 where each \(i_m \) is chosen from 1, 2, \ldots, \(k \)
 and \(U_j = u_{i_1} u_{i_2} \ldots u_{i_k} \) is as follows:
 - [This is the form we actually use.] Consider the vector \((x-x_0)\).
 The Taylor series approximation for \(I(x) \) with \(x \) near \(x_0 \) is

 \[
 I(x) \approx I(x_0) + \sum_{k=0}^{n} \text{term}_k / k!,
 \]
 where

 \[
 \text{term}_k = (x-x_0)^T \bullet \left[(x-x_0)^T \bullet \ldots \left[(x-x_0)^T \bullet D^k I(x_0) \right] \ldots \right] \bullet (x-x_0),
 \]
 with the series of vector products including \(k-1 \) entries
 - \(\prod_{j=1}^{k} (x_{ij} - x_{0ij}) \) are **basis images**; \(U_j \bullet D^k I(x_0) / k! \) are coefficients
Representation of 2D and 3D images as Taylor series

• Thus if we can compute image derivatives,

\[
I(x) = I(x_0) + \frac{1}{1!} \sum_{i=1}^{M} (x_i - x_{0i}) \frac{\partial I}{\partial x_i}(x_0) + \frac{1}{2!} \sum_{i,j=1}^{M} (x_i - x_{0i})(x_j - x_{0j}) \frac{\partial^2 I}{\partial x_i \partial x_j}(x_0) + \ldots
\]

\[
I(x) = I(x_0) + \frac{1}{1!} (x - x_0)^T D^1 I(x_0) + \frac{1}{2!} (x - x_0)^T D^2 I(x_0) (x - x_0) + \ldots
\]

– where \(D^1 I = \nabla I \), the gradient of I, an M-vector with components \(\frac{\partial I}{\partial x_i} \)

\[
D^2 I(x_0) = \text{the “Hessian” of I, an } M \times M \text{ matrix with components } \frac{\partial^2 I}{\partial x_i \partial x_j}
\]

– Each image derivative is itself an image

• When you cut off the series to a given number of terms, the result is a continuous image with pixel values computable at any value of \(x \)
Usefulness of Taylor Series and Spatial Derivatives

- Taylor series express an image **locally** as a polynomial in the components of x whose coefficients are derivatives normalized by factorials
 - They provide a very poor approximation with a reasonably small number of terms except extremely locally
- The spatial derivatives of order 1 are used to compute edgeness, and those of order 2 are used to compute barness
Exercise
Due as a digital picture at class time on Thurs. 1/20

• Example: assume you are given the 2D image of 2-tensors $D^2 I(x)$
 - Reminder: $D^2 I(x)_{ij} = \frac{\partial^2 I}{\partial x_i \partial x_j}(x), i=1,2; j=1,2$

 Given two unit (direction) vectors \mathbf{u}_1 and \mathbf{u}_2 and $D^2 I(x)$, a) give a formula for the (scalar) image $D^2 I_{u_1 u_2}(x)$
 Answer: $\mathbf{u}_1^T D^2 I(x) \mathbf{u}_2$

 b) give a formula for $\frac{\partial^2 I}{\partial y^2}(x)$ Answer: $\mathbf{e}_y^T D^2 I(x) \mathbf{e}_y$, where $\mathbf{e}_y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$;
 thus $D^2 I(x)_{22}$

• Exercise: Given three unit (direction) vectors \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 and the derivative tensor needed,
 a) give a formula for the (scalar) image $D^3 I_{u_1 u_2 u_3}(x)$

 b)) give a formula for the scalar image $\frac{\partial^3 I}{\partial x^2 \partial y}(x)$