An image as a function on space

- 2D: I(x,y), typically on rectangular domain
- 3D: I(x,y,z), typically on rectilinear domain
- Both written $I(\underline{x})$
- Discrete images
 - 2D: pixels at sampled values of x,y
 - 3D: *voxels* at sampled values of x,y,z
 - Sampling is typically regular in each dimension
 - "Isotropic sampling", where the sampling distance is the same in each dimension, is most common
 - Non-isotropic sampling is possible
 - Both (2D or 3D) written $I(\underline{x}_i)$ or $\underline{I}(\underline{x}_i)$
 - $\underline{\underline{I}(\underline{x_i})}$ when there is more than 1 intensity value at each pixel or voxel

Images & Objects

	Output	
	Image	Objects
Image	Image Processing	Image Analysis
Input		
Objects	Computer Graphics	

Objectives of Image Processing we will be concerned with

- Restoration
 (of blurring, noise, distortion)
- Preparation for image analysis
 - E.g., edginess, barness
- Re-formation
 - Changes in sampling
 - Normalization of translation, orientation, scaling
 - Visualizations, e.g., 3D rendering
- 3D to 2D
 - Projections, as with x-rays
 - Slices

Horizontal Edginess

Other Objectives on Images we will be concerned with

- Storage and Transmission
 - Thus compression
- Registration of images

- Display
 - 2D images: resampling, geometric transformations
 - Creation of 3D images: geometric transformations

Prerequisites

- Ability to program
 - Best if you know or learn matlab
 - − If not, email whether you plan to use C++ or Python
- Calculus of many variables
 - Partial derivatives, directional derivatives, gradient
- Matrix multiplication, matrix times vectors, vector dot products, matrix determinants
 - You need not have a full course in linear algebra,
 though having one will ease your way
 - We will make use of eigenvector and eigenvalue decomposition, but I will teach that
 - We will interpret these matrix and vector operations geometrically, but I will teach that

The Math Needed to Understand Image Processing

- Representation of images as Taylor series
 - Thus computation of image spatial derivatives
- Invariant operators: to shift, rotation, scale
- Shift-invariant, linear operators: convolution
 - Point and line spread functions and other convolution kernels
 - Representation of images via orthogonal basis functions, esp. sinusoids (Fourier basis functions)
 - Understanding convolution and derivatives via Fourier basis functions
- Imaging properties: resolution, noise, distortion
- Representation of images as pixels or voxels: understanding sampling effects

The Math Needed to Understand Image Processing^{cont.}

- Spatial scale
 - Two aspects
 - Levels of detail
 - Gaussian apertures and spatial scale
 - Intensity noise vs. scale
- Multiscale representations
 - Splines

- Gaussian derivatives
- Gabor wavelets
- Orthogonal wavelets

The Math Needed to Understand Image Processing^{cont.}

- Measures of edge and bar strength via derivatives
- Ridges in images, towards finding edges and bars
- Interpolation of discrete images
 - Via convolution; via orthogonal basis functions
 - Via splines
 - Via least-squares approximations
- Discrete images as algebraic graphs, with objects as graph cuts

The Math Needed to Understand Image Processing^{concl.}

- Affine geometric transformations, in 2D and 3D
 - Rigid transformations
 - Rotation: via matrices, via quaternions
 - Similarity transformations
 - Perspective transformations, homogeneous coords.
- Geometric distortion and deformation

The Math Needed to Understand Image Processing concl.

- Optimization methods
 - Gradient based; Lagrange multipliers
- [Information theory: entropy and mutual information; Levenberg-Marquardt optimization]

The Course Processes

- These slides are the text; they will appear on Sakai well before the class in which they are used
 - You probably will want to take notes on them
 - They will be updated when fixes are needed
 - Some assigned reading in Wikipedia and reserve book
 - Esp. consider purchasing *Image Processing and Analysis* by Stan Birchfield, Cengage Learning, 2016
- Since there is only this abbreviated text material, lecture attendance is critical
 - If you must miss a lecture, immediately viewing recorded lecture,
 getting class notes from another student, reading the ppt slides
 covered, studying them, followed by meeting with me is important

The Course Processes (2)

- For getting questions asked,
 - Use class: ask for clarifications, make corrections
 - Use my office hours: Tuesdays: 3:30-4:30, Fridays: 3:30-4:30
 - Including this week, remotely
 - Normally in my office: 222 SN
 - Course zoom site is https://unc.zoom.us/j/964026521
 - A Piazza site will be set up for you answer each other's questions
 - OK for homework interpretation but not for homework solutions
 - Please identify yourself in your Piazza entries
 - LAs will monitor that and try to help, but if you want an answer from me, send email

Homework

- Assignments will typically be 2 weeks long
- Most assignments will involve writing programs (best in Matlab) using pre-programmed functions or directly running pre-programmed functions
 - Get right version of Matlab on your laptop; UNC has a license
 - LAs will help
 - These will be done in teams of 2 (assigned by me at random and re-assigned every 2 assignments)
 - Each of you needs to write your own program (incl. your own internal documentation), and you will find problems in each other's programs
 - You will pass in separate programs to the unit testing system, which will do the grading of correctness; manual grading of documentation will be applied
- A few assignments will be trials of questions that are like on what the exam will be: on properties of math and algorithms and on concepts
 - These you will do alone

Grading

- Two exams, both open "book" and notes: 2/3 of average of best two units of
 - Midterm: 1 unit
 - Final, in classroom at scheduled time: 2 units
 - That is, if final score > midterm score, exam score := final score,
 else exam score := (midterm score + final score)/2
- Homework score: 33%
- Class participation: upgrader for grades near inter-grade boundary
 - Class attendance, incl. possible pop quizzes
 - Asking questions and making corrections in class
 - Coming to my office hours and those of TA
 - Participation in Piazza discussions

Homework Grades

- Sum of weighted individual assignment scores
 - I expect 6-7 programming assignments
 - Pass in via Gradescope and/or Matlab testing program
 - Run that program for yourself on your own data as check
 - Weights
 - on time: 100%
 - more than 1 week late: 50%
 - less than 1 week late: 90%
 - The most advantageous of these will have a weight of 100%