Examples about conditional probability and independence

(1-1) Experiment: Throw a "2-one" dice, i.e. no 6 but two 1's.
Event A: Dice 1 is 1
Event B: Dice 1 is odd
To calculate: $\mathrm{p}\{\mathrm{A} \mid \mathrm{B}\}$ (meaning the probability of Event A occurring under the condition that Event B occurs)
$p\{A \mid B\}=p\{A \mid B\}=p\{x=1 \mid x$ is odd $\}=p\{x=1$ and $x=o d d\} / p\{x=o d d\}=p\{x=1\} / p\{x=o d d\}=(1 / 3) /(2 / 3)$
$=1 / 2$
Note that $p\{A \mid B\}$! $=P\{A\}$, so Event A and Event B are dependent (of course they are, by definition).
(1-2) Experiment: Throw a "2-one" dice twice, i.e. no 6 but two 1s.
Event A: Dice 1 is 1
Event B: Dice 2 is odd
To calculate: $\mathrm{p}\{\mathrm{A} \mid \mathrm{B}\}$

We have $\mathrm{p}\{\mathrm{x}=1$ and $\mathrm{y}=\mathrm{odd}\}=\mathrm{p}\{(1,1),(1,3),(1,5)\}=\mathrm{p}\{(1,1)\}+\mathrm{p}\{(1,3)\}+\mathrm{p}\{(1,5)\}=$ $4 / 36+2 / 36+2 / 36=2 / 9$ (the original side for "6" also results in "1" for this special dice)
To calculate: $p\{A \mid B\}=p\{A \mid B\}=p\{x=1 \mid y$ is odd $\}=p\{x=1$ and $y=o d d\} / p\{y=o d d\}=(2 / 9) /(2 / 3)=1 / 3$ Note that $p\{A\}=p\{x=1\}=1 / 3$, so we've verified that Event A and Event B are independent.
(2) Experiment: Rolling two independent dice. Still the "2-one" dice, i.e. no 6 but two 1 's.

Event A: Dice $1<3$
Event B: Dice $2>3$
To calculate: $\mathrm{p}\{\mathrm{A} \mid \mathrm{B}\}$

It's trivial that A and B are independent (two different throws have 0 impact on each other).
$p\{A \mid B\}=p\{x 1<3 \mid x 2>3\}=p\{x 1<3$ and $x 2>3\} / p\{x 2>3\}$
so that for a "2-one" dice:
$x 1=\{1,2\}, x 2=\{4,5\}$
$p\{x 2>3\}=p\{x=4$ or $x=5\}=p\{x=4\}+p\{x=5\}=1 / 6+1 / 6=1 / 3$
$\mathrm{p}\{\mathrm{x} 1<3$ and $\mathrm{x} 2>3\}=\mathrm{p}\{(1,4),(1,5),(2,4),(2,5)\}=\mathrm{p}\{(1,4)\}+\mathrm{p}\{(1,5)\}+\mathrm{p}\{(2,4)\}+\mathrm{p}\{(2,5)\}$,
where $p\{(1,4)\}=p(x 1=1$ and $x 2=4)=2 / 36$, (the original $\{6,4\}$ also results in $\{1,4\}$ for this special
dice)
similarly $p\{(1,5)\}=2 / 36$;
$p\{(2,4)\}=p\{x 1=2$ and $x 2=4\}=1 / 36$
similarly $p\{(2,5)\}=1 / 36$;
$=>p(A$ and $B)=1 / 18+1 / 18+1 / 36+1 / 36=1 / 6$
$\Rightarrow p\{A \mid B\}=(1 / 6) /(1 / 3)=1 / 2$
$p\{A\}=p\{x=1\}+p\{x=2\}=1 / 2=p\{A \mid B\}$, so we've verified that A and B are independent.

