pp. 37, Exercise Set 2.1

8. b. $\sim w \wedge (h \wedge s)$

 $c. \sim w \land \sim h \land \sim s$

e. $w \land \sim (h \land s)$ $(w \land (\sim h \lor \sim s)$ is also acceptable)

15.

	p	q	r	$\sim q$	$\sim q \vee r$	$p \wedge (\sim q \vee r)$
1	Τ	T	T	F	T	T
1	T	T	F	F	F	F
1	T	F	T	T	T	T
1	T	F	F	T	T	T
	F	T	T	F	T	F
	F	T	F	F	F	F
	F	F	T	T	T	F
	F	F	F	T	T	F

20.

20.	p	С	$p \wedge c$	$p \lor \mathbf{c}$	
	T	F	F	T	←
	F	F	F	F	

different truth values in row 1

The truth table shows that $p \wedge \mathbf{c}$ and $p \vee \mathbf{c}$ do not always have the same truth values. Thus they are not logically equivalent.

31. The train is not late and my watch is not fast.

46. b. Yes.

p	q	r	$p \oplus q$	$q \oplus r$	$(p \oplus q) \oplus r$	$p\oplus (q\oplus r)$
T	T	T	F	F	T	T
T	T	F	F	T	F	F
T	F	T	T	T	F	F
T	F	F	T	F	T	T
F	T	T	T	F	F	F
F	T	F	T	T	T	T
F	F	T	F	T	T	T
F	F	F	F	F	F	F

same truth values

The truth table shows that $(p \oplus q) \oplus r$ and $p \oplus (q \oplus r)$ always have the same truth values. So they are logically equivalent.

c. Yes.

	p	q	r	$p \oplus q$	$p \wedge r$	$q\wedge r$	$(p \oplus q) \wedge r$	$(p \wedge r) \oplus (q \wedge r)$
\vdash	T	T	T	F	T	T	F	F
	T	T	F	F	F	F	F	F
	T	F	T	T	T	F	T	T
	T	F	F	T	F	F	F	F
	F	T	T	T	F	T	T	T
	F	T	F	T	F	F	F	F
	F	F	T	F	F	F	F	F
L	F	F	F	F	F	F	F	F

same truth values

The truth table shows that $(p \oplus q) \wedge r$ and $(p \wedge r) \oplus (q \wedge r)$ always have the same truth values. So they are logically equivalent.

pp. 49, Exercise Set 2.2

10.

	p	q	r	$p \rightarrow r$	$q \to r$	$(p \rightarrow r) \leftrightarrow (q \rightarrow r)$
ſ	T	T	T	T	T	T
	T	T	F	F	F	T
	T	F	T	T	T	T
	T	F	F	F	T	F
	F	T	T	T	T	T
	F	T	F	T	F	F
	F	F	T	T	T	T
	F	F	F	T	T	T

14. a.

p	q	r	$\sim q$	$\sim r$	$q \lor r$	$p \land \sim q$	$p \land \sim r$	$p \rightarrow q \lor r$	$p \land \sim q \rightarrow r$	$p \land \sim r \rightarrow q$
T	T	T	F	F	T	F	F	T	T	T
T	T	F	F	T	T	F	T	T	T	T
T	F	T	T	F	T	T	F	T	T	T
T	F	F	T	T	F	T	T	F	F	F
F	T	T	F	F	T	F	F	T	T	T
F	T	F	F	T	T	F	F	T	T	T
F	F	T	T	F	T	F	F	T	T	T
F	F	F	T	T	F	F	F	T	T	T

same truth values

The truth table shows that the three statement forms $p \to q \lor r$, $p \land \sim q \to r$, and $p \land \sim r \to q$ always have the same truth values. Thus they are all logically equivalent.

b. If n is prime and n is not odd, then n is 2.

And: If n is prime and n is not 2, then n is odd.

45. If this computer program produces error messages during translation, then it is not correct. If this computer program is correct, then it does not produce error messages during translation.

Exercise Set 2.3, exercises 7,12,37(similar to Example 2.3.8)

12. b. premises conclusion

		_~	$\overline{}$		_
p	q	$p \rightarrow q$	$\sim p$	$\sim q$	
T	T	T	F		
T	F	F	F		
F	T	T	T	F -	- critical row
F	F	T	T	T ←	- critical row

Rows 3, and 4 of the truth table represent the situations in which all the premises are true, but row 3 shows that it is possible for an argument of this form to have true premises and a false conclusion. Hence the argument form is invalid.