Quiz 3

(80') Name PID
(8') 1 . Let $A_{i}=[-i, i]$ what are the result for each of the following union or intersection?
(a) $\bigcup_{i=0}^{\infty} A_{i}=(-\infty, \infty)$
(b) $\bigcap_{i=0}^{\infty} A_{i}=\{\mathbf{0}\}$
(c) How many elements are there in A_{1} ? Infinite
(d) How many elements are there in A_{0} ?

1
(8') 3. Let $B_{i}=\{-i, i\}$ what are the result for each of the following union or intersection?
(a) $\bigcup_{i=0}^{\infty} B_{i}=\mathbf{Z}$
(b) $\bigcap_{i=0}^{\infty} B_{i}=\emptyset$
(c) How many elements are there in B_{1} ? $\mathbf{2}$
(d) How many elements are there in B_{0} ? $\mathbf{1}$
(4') 5. Show the following equation, i.e., write some intermediate steps from the left-hand-side (LHS) to the right-hand-side (RHS) so that each step is trivial.

$$
8 \cdot\left(2 \cdot 5^{k}-3^{k}\right)-15 \cdot\left(2 \cdot 5^{k-1}-3^{k-1}\right)=2 \cdot 5^{k+1}-3^{k+1}
$$

Solution:

$$
\begin{aligned}
& 8 \cdot\left(2 \cdot 5^{k}-3^{k}\right)-15 \cdot\left(2 \cdot 5^{k-1}-3^{k-1}\right) \\
= & 16 \cdot 5^{k}-8 \cdot 3^{k}-30 \cdot 5^{k-1}+15 \cdot 3^{k-1} \\
= & 80 \cdot 5^{k-1}-24 \cdot 3^{k-1}-30 \cdot 5^{k-1}+15 \cdot 3^{k-1} \\
= & 50 \cdot 5^{k-1}-9 \cdot 3^{k-1} \\
= & 2 \cdot 5^{k+1}-3^{k+1}
\end{aligned}
$$

(Bonus 5') Any comments, suggestions and/or concerns about this course and/or the instructor? (E.g., until now, whether this course is harder/easier than what you expect?)

