Quiz 2

(80') Name
PID
(16') 1. Determine whether each of the following statement is true or false. If it is false, please provide a counterexample. (Note that, due to time constraints, you do not need to prove a true statement; however, you must give a counterexample for false statement. Claiming a statement is false without a counterexample will receive no point.)
(a) The sum of two irrational numbers is irrational.

False.
Counterexample: $(\sqrt{2})+(-\sqrt{2})=0$
(b) The product of two irrational number2 is irrational.

False.
Counterexample: $(\sqrt{2}) \cdot(-\sqrt{2})=2$
(c) The sum of a rational number and an irrational number is irrational.

True.
Proof: We prove this statement by contradiction. Suppose the statement is false. That is, suppose there is a rational number x and an irrational number y such that their sum, $x+y$, is rational. By the definition of rational numbers, we have

$$
x=a / b \text { and } x+y=c / d \text { for some integers } a, b, c, d, \text { where } b \neq 0 \text { and } d \neq 0 \text {. }
$$

That is,

$$
a / b+y=c / d .
$$

Then, by basic algebra,

$$
y=\frac{c}{d}-\frac{a}{b}=\frac{b c-a d}{b d} .
$$

Because the set of all integers are closed under addition, subtraction, and multiplication, and a, b, c, d are integers, $b c-a d$ and $b d$ are also integers. Furthermore, because $b \neq 0$ and $d \neq 0, b d \neq 0$.
Therefore, by the definition of rational numbers, y is a rational number.
On the other hand, in the supposition at the beginning, we supposed y is an irrational number.
Thus, y is a rational number and y is an irrational number, which is a contradiction.
So, the supposition cannot be true. That is, the original statement is true.
(d) The product of a rational number and an irrational number is irrational.

False.
Counterexample: $0 \cdot(\sqrt{2})=0$
(4') 2. Prove the following statement by contradiction: $\sqrt{2}+\sqrt{3}$ is irrational. You can assume that " $\sqrt{2}$ is irrational" and " $\sqrt{2}+\sqrt{3}>0$ " are already proved fact (i.e., you can use them in your proof). Proof: We prove this statement by contradiction. Suppose the statement is false. That is, suppose $\sqrt{2}+\sqrt{3}$ is rational. Then, by the definition of rational numbers, we have

$$
\sqrt{2}+\sqrt{3}=\frac{a}{b^{\prime}}
$$

where a, b are integers and $a \neq 0$ (because $\sqrt{2}+\sqrt{3}>0$) and $b \neq 0$.
By multiplying b on both sides, we have

$$
b \cdot \sqrt{2}+b \cdot \sqrt{3}=a
$$

which can be rearranged as

$$
b \cdot \sqrt{3}=a-b \cdot \sqrt{2}
$$

Taking the square of both sides, we have

$$
3 b^{2}=a^{2}-2 \sqrt{2} \cdot a b+2 b^{2}
$$

which can be rearranged as

$$
\sqrt{2}=\frac{a^{2}-b^{2}}{2 a b} .
$$

Because a, b are integers and $a \neq 0$ and $b \neq 0, a^{2}-b^{2}$ and $2 a b$ are also integers, and $2 a b \neq 0$.
Therefore, by the definition of rational numbers, $\sqrt{2}$ is rational. However, it has been proved that $\sqrt{2}$ is irrational.
Thus, $\sqrt{2}$ is rational and $\sqrt{2}$ is irrational, which is a contradiction.
So, the supposition cannot be true. That is, the original statement is true.
(Bonus 5') Any comments and/or suggestions to this course and/or the instructor? (E.g. were the homework questions too hard or too simple?) You may use the other side of this paper.

