Notes 7

discrete probability $P(E)=N(E) / N(S)$
S-sample space; E-event. Both are defined as a set of possible outcomes. outcome-all outcomes are equally likely to occur
multiplication rule
each step has a fixed number of ways to perform regardless of how the preceding steps were performed
addition rule-key word: disjoint
difference rule-key word: subset
inclusive/exclusive rule-think graphically
permutation-ordered selection

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

combination-unordered selection

$$
\binom{n}{r}=\frac{n!}{r!\cdot(n-r)!}
$$

probability formulas directly from the addition, difference, and inclusive/exclusive rules
expected value-"weighted" (by probability) average. Suppose $\mathrm{P}\left(x=a_{k}\right)=p_{k}$, then the expected value of x is

$$
\sum_{k=1}^{n}\left(a_{k} p_{k}\right) .
$$

conditional probability of B given A
independent events A and B

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Pascal's Triangle and the Binomial Theorem-understand the three formulas

$$
\binom{n}{r}=\binom{n}{n-r} \quad\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r} \quad \sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

pigeonhole principle and generalized pigeonhole principle

