Notes 4

Set-a collection of elements. Expressed by elements between braces. \{ \}
Elements can be anything, including sets. (A box can be in another box.)
two options to specify a set
set-roster notation. $\mathrm{S}=\{1,2,3, \ldots\}$
set-builder notation. $S=\{x \in Z \mid x \geq 1\}$
$x \in S, x$ is an element of the set S
$\mathrm{A} \subseteq \mathrm{B}, \mathrm{A}$ is a subset of the set B
proper subset
empty set Ø
distinguish \varnothing and $\{\varnothing\}$ (an empty box v.s. a box that includes another box that is empty.)
represent real number intervals by (,), [, and]
(and) means "no equal", called open interval
[and] means "can be equal", called closed interval
infinite notation ∞ and $-\infty$ ∞ and $-\infty$ are always open, i.e., always with (or) but not [or].
mutual disjoint set, partitions of sets, power set
Venn Diagrams

Tuple--a sequence of ordered elements. Expressed by elements between parentheses. ()
Set v.s. Tuple
Set-unordered, no duplicate
Tuple-ordered, duplicates allowed
n-tuple, ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$); 2-tuple-pair; 3-tuple-triple

Cartesian Products- $\mathrm{A} \times \mathrm{B}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{B}\}$
$\mathrm{A}_{1} \times \mathrm{A}_{2} \times \ldots \times \mathrm{A}_{n}=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{n}\right) \mid \mathrm{a}_{1} \in \mathrm{~A}_{1}, \mathrm{a}_{2} \in \mathrm{~A}_{2}\right.$, and $\left.\mathrm{a}_{n} \in \mathrm{~A}_{n}\right\}$

Set operations

union $A \cup B$, intersection $A \cap B$, difference (relative complement) $A-B$, complement A^{c} universal set $U, A^{c}=U-A$

$$
\bigcup_{i=0}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n} ; \quad \bigcap_{i=0}^{n} A_{i}=A_{1} \cap A_{2} \cap \ldots \cap A_{n} ;
$$

set operations v.s. logic operators
union-or; intersection-and; complement-negation
Theorem 6.2.2 and Table 6.4.1.

