Notes 4

Set—a collection of elements. Expressed by elements between braces. { } Elements can be anything, including sets. (A box can be in another box.) two options to specify a set set-roster notation. $S = \{1, 2, 3, ...\}$ set-builder notation. $S = \{x \in Z \mid x \ge 1\}$ $x \in S$, x is an element of the set S $A \subseteq B$, A is a subset of the set B proper subset empty set Ø distinguish \emptyset and $\{\emptyset\}$ (an empty box v.s. a box that includes another box that is empty.) represent real number intervals by (,), [, and] (and) means "no equal", called open interval [and] means "can be equal", called closed interval infinite notation ∞ and $-\infty$ ∞ and $-\infty$ are always open, i.e., always with (or) but not [or]. mutual disjoint set, partitions of sets, power set Venn Diagrams

Tuple--a sequence of ordered elements. Expressed by elements between parentheses. ()

Set v.s. Tuple

Set—unordered, no duplicate Tuple—ordered, duplicates allowed n-tuple, (x₁,x₂,...x_n); 2-tuple—pair; 3-tuple—triple

Cartesian Products— $A \times B = \{(a, b) | a \in A \text{ and } b \in B\}$ $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ... a_n) | a_1 \in A_1, a_2 \in A_2 \text{ , and } a_n \in A_n\}$

Set operations

union $A \cup B$, intersection $A \cap B$, difference (relative complement) A - B, complement A^c universal set U, $A^c = U - A$

$$\bigcup_{i=0}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n; \qquad \bigcap_{i=0}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n;$$

set operations v.s. logic operators

union-or; intersection-and; complement-negation

Theorem 6.2.2 and Table 6.4.1.