Homework 7

Due on Friday, 6/16, 1:15 PM in class

Name \qquad PID
Honor Code Pledge: I certify that I am aware of the Honor Code in effect in this course and observed the Honor Code in the completion of this homework.

Signature \qquad
(20') 1 . Define a relation R from $\{a, b, c\}$ to $\{u, v\}$ as follows: $R=\{(a, u),(b, u),(c, v)\}$.
(a) Draw an arrow diagram for R.
(b) Is R a function? Why or why not?
(c) Draw an arrow diagram for the inverse relation of R.
(d) Is the inverse relation of R a function? Why or why not?

Solution:

(a)

(b) R is a function, because every element in the domain has exact one match in the codomain.
(c)

(d) The inverse relation of R is not a function, because the element u in the domain has two matches in the co-domain.
(20') 2 . Let $A=\{0,1,2,3\}$ and define a relation R on A as follows:

$$
R=\{(0,2),(0,3),(2,0),(2,1)\} .
$$

(a) Draw the directed graph of R.
(b) Is R reflexive? Explain.
(c) Is R symmetric? Explain.
(d) Is R transitive? Explain.

Solution:

(a)

(a)
(b) R is not reflexive, because, for example, $(0,0)$ is not included.
(c) R is not symmetric, because, for example, $(0,3)$ is included but $(3,0)$ is not.
(d) R is not transitive, because, for example, $(0,2)$ and $(2,1)$ are included but $(0,1)$ is not.
(20') 3. Define a relation R on the set of positive integers as follows: for all positive integers m and $n, m R n \Leftrightarrow m \mid n$.
(a) Is R reflexive? If yes, prove it; if no, disprove it by a counterexample.
(b) Is R symmetric? If yes, prove it; if no, disprove it by a counterexample.
(c) Is R transitive? If yes, prove it; if no, disprove it by a counterexample.

Solution:

(a) R is reflexive. Proof: for an arbitrarily chosen positive integer $x, x=1 * x$. Therefore, $m \mid m$, i.e., $x R x$. Thus, R is reflexive.
(b) R is not symmetric. Counterexample: $2 R 4$ but $4 R 2$.
(c) R is transitive. Proof: suppose $x R y$ and. $y R z$, then by definition of $R, x \mid y$ and $y \mid z$. That is, $y=x^{*} k_{1}$ and $z=y^{*} k_{2}$ for some integers $k_{1}, k 2$. Therefore, $z=x^{*} k_{1} * k_{2}=\left(k_{1} * k_{2}\right)^{*} x$, where $k_{1} * k_{2}$ is an integer. So, $x \mid y$, which is $x R y$. Thus, R is transitive.
(15') 4. Let $A=\{1,2,3,4\}$ and define a relation R on A as follows:

$$
R=\{(1,1),(1,3),(1,4),(2,2),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)\}
$$

(a) Draw the directed graph of R.
(b) Is R an equivalence relation? Explain. If yes, find the distinct equivalence classes of R.

Solution:
(a)

(b) R is an equivalence relation. The two equivalence classes are $[1]=\{1,3,4\}$ and $[2]=\{2\}$.
(15') 5 . Let $A=\{1,2,3,4\}$ and define a relation R on A as follows:

$$
R=\{(1,1),(2,2),(3,1),(3,3),(4,1),(4,3),(4,4)\} .
$$

(a) Draw the directed graph of R.
(b) Is R a partial order relation? Explain. If yes, give a topological sorting of R.

Solution:

(a)

(b) R is a partial order relation. A topological sorting of R can be $2,4,3,1$. (Other correct topological sorting includes, 4,2,3,1; 4,3,2,1; 4,3,1,2.)
(10') 6 . Find the minimum nonnegative x, y, or z that satisfies each of the following modular arithmetic expressions.
(a) $20 \equiv x(\bmod 7)$
(b) $-20 \equiv y(\bmod 7)$
(c) $8^{10} \equiv z(\bmod 7)$

Solution:

(a) $x=6$
(b) $y=1$
(c) $z=1\left(\right.$ Note that $8^{10} \equiv(8 \bmod 7)^{10}(\bmod 7)$, that is $8^{10} \equiv(1)^{10}(\bmod 7)$.)

