Homework 7

Due on Friday, 6/16, 1:15 PM in class

Name
PID
Honor Code Pledge: I certify that I am aware of the Honor Code in effect in this course and observed the Honor Code in the completion of this homework.

Signature
(20') 1. Define a relation R from $\{a, b, c\}$ to $\{u, v\}$ as follows: $R=\{(a, u),(b, u),(c, v)\}$.
(a) Draw an arrow diagram for R.
(b) Is R a function? Why or why not?
(c) Draw an arrow diagram for the inverse relation of R.
(d) Is the inverse relation of R a function? Why or why not?
(20') 2 . Let $A=\{0,1,2,3\}$ and define a relation R on A as follows:

$$
R=\{(0,2),(0,3),(2,0),(2,1)\} .
$$

(a) Draw the directed graph of R.
(b) Is R reflexive? Explain.
(c) Is R symmetric? Explain.
(d) Is R transitive? Explain.
(20') 3. Define a relation R on the set of positive integers as follows:
for all positive integers m and $n, m R n \Leftrightarrow m \mid n$.
(a) Is R reflexive? If yes, prove it; if no, disprove it by a counterexample.
(b) Is R symmetric? If yes, prove it; if no, disprove it by a counterexample.
(c) Is R transitive? If yes, prove it; if no, disprove it by a counterexample.
(15') 4 . Let $A=\{1,2,3,4\}$ and define a relation R on A as follows:

$$
R=\{(1,1),(1,3),(1,4),(2,2),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)\} .
$$

(a) Draw the directed graph of R.
(b) Is R an equivalence relation? Explain. If yes, find the distinct equivalence classes of R.
(15') 5 . Let $A=\{1,2,3,4\}$ and define a relation R on A as follows:

$$
R=\{(1,1),(2,2),(3,1),(3,3),(4,1),(4,3),(4,4)\} .
$$

(a) Draw the directed graph of R.
(b) Is R a partial order relation? Explain. If yes, give a topological sorting of R.
(10') 6 . Find the minimum nonnegative x, y, or z that satisfies each of the following modular arithmetic expressions.
(a) $20 \equiv x(\bmod 7)$
(b) $-20 \equiv y(\bmod 7)$
(c) $8^{10} \equiv z(\bmod 7)$

