Homework 6

Due on Tuesday, $6 / 13,1: 15 \mathrm{PM}$ in class

Name
PID
Honor Code Pledge: I certify that I am aware of the Honor Code in effect in this course and observed the Honor Code in the completion of this homework.

Signature \qquad
(15') 1. Let $X=\{a, b, c\}$ and $\mathrm{Y}=\{u, v, w\}$. Determine whether each of the following arrow diagrams defines a function from X to Y, and explain your answers in a few words.
a.

b.

c.

(20') 2. Let $X=\{1,2,3,4,5\}$ and $Y=\{u, v, w, x, y\}$, and define $h: X \rightarrow Y$ as follows:

$$
h(1)=v, h(2)=x, h(3)=v, h(4)=v, h(5)=y .
$$

(a) Draw an arrow diagram for h.
(b) Let $A=\{1,2\}, C=\{x, v\}, D=\{w\}$, and $E=\{w, y\}$. Find

$$
h(A), h(X), h^{-1}(C), h^{-1}(D), h^{-1}(E) \text {, and } h^{-1}(Y) .
$$

(15') 3. Let S be the set of all strings in 0 's and 1's, and define a function $f: S \rightarrow \mathbf{Z}$ as follows:
for each string s in $S, f(s)=$ the number of 0 's in s .
(a) What is $f(101011)$? $f(00100)$?
(b) Is f injective? Prove or give a counterexample.
(c) Is f surjective? Prove or give a counterexample.
(20') 4. Let S be the set of all strings in 0 's and 1's, and define a function $g: S \rightarrow \mathbf{Z}^{+} \cup\{0\}$ as follows: (Note that \mathbf{Z}^{+}denotes the set of all positive integers, so $\mathbf{Z}^{+} \cup\{0\}$ denotes the set of all non-negative integers.)
for all strings s in $S, g(\mathrm{~s})=$ the number of 1 's in s.
(a) What is $g(001000) ? ~ g(111001) ? ~ g(10101) ? ~ g(0100)$?
(b) Is g injective? Prove or give a counterexample.
(c) Is g surjective? Prove or give a counterexample.
(d) Is g a bijection? If so, find g^{-1}.
(20') 5. Define $F: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$ as follows: $F(x, y)=(3 y-1,1-x)$ for all (x, y) in $\mathbf{R} \times \mathbf{R}$.
(a) $F(0,0)=$? $F(1,4)=$?
(b) Is F injective? Prove or give a counterexample.
(c) Is F surjective? Prove or give a counterexample.
(d) Is F a bijection? If not, explain why not. If yes, find F^{-1}.
(10') Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ are two functions defined as follows:

$$
f(x)=x-1 ; g(x)=x^{2}-1 .
$$

Then, define $F(x)=f(g(\mathrm{x}))$ and $G(x)=g(f(x))$.
(a) What is $F(2)$? $G(2)$?
(b) Write explicit expressions for $F(x)$ and $G(x)$. Simplify the results as much as you can.

