Homework 4

Due on Monday, $6 / 5,1: 15$ PM in class

Name \qquad PID
Honor Code Pledge: I certify that I am aware of the Honor Code in effect in this course and observed the Honor Code in the completion of this homework.

Signature \qquad
(30') 1. Calculate the following sum or product. (I encourage you to include intermediate steps, which may give you partial credits in case you did the math wrong.)
(a)

$$
\sum_{i=3}^{7}(i-5)
$$

(b)

(c)

$$
\left(\sum_{j=6}^{6} j\right)^{2}
$$

(d)

$$
\sum_{i=2}^{5} \sum_{j=1}^{3}(i \cdot j)
$$

(e)

(f)

$$
\sum_{i=2}^{5} \sum_{j=1}^{i}(i \cdot j)
$$

Solution:

(a) $\quad \sum_{i=3}^{7}(i-5)=(3-5)+(4-5)+(5-5)+(6-5)+(7-5)=0$
(b) $\prod_{k=0}^{4}(k!)=0$! * 1 ! 2 ! *3! * 4 ! $=1 * 1 *(2 * 1) *(3 * 2 * 1) *(4 * 3 * 2 * 1)=288$
(c) $\left(\sum_{j=6}^{6} j\right)^{2}=6^{2}=36$
(d) $\quad \sum_{i=2}^{5} \sum_{j=1}^{3}(i \cdot j)=\sum_{j=1}^{3}(2 \cdot j)+\sum_{j=1}^{3}(3 \cdot j)+\sum_{j=1}^{3}(4 \cdot j)+\sum_{j=1}^{3}(5 \cdot j)$

$$
\begin{aligned}
& =(2 * 1+2 * 2+2 * 3)+(3 * 1+3 * 2+3 * 3)+(4 * 1+4 * 2+4 * 3)+(5 * 1+5 * 2+5 * 3) \\
& =12+18+24+30=84
\end{aligned}
$$

(e) $\prod_{i=1}^{3}\left(\sum_{j=1}^{i} j\right)=\left(\sum_{j=1}^{1} j\right) \cdot\left(\sum_{j=1}^{2} j\right) \cdot\left(\sum_{j=1}^{3} j\right)$

$$
=(1) \cdot(1+2) \cdot(1+2+3)=18
$$

(f) $\quad \sum_{i=2}^{5} \sum_{j=1}^{i}(i \cdot j)=\sum_{j=1}^{2}(2 \cdot j)+\sum_{j=1}^{3}(3 \cdot j)+\sum_{j=2}^{4}(4 \cdot j)+\sum_{j=2}^{5}(5 \cdot j)$

$$
\begin{aligned}
& =(2 * 1+2 * 2)+(3 * 1+3 * 2+3 * 3)+(4 * 1+4 * 2+4 * 3+4 * 4)+(5 * 1+5 * 2+5 * 3+5 * 4+5 * 5) \\
& =6+18+40+75=139
\end{aligned}
$$

(20') 2. Consider the following formula where n is an integer and $n \geq 3$:

$$
\sum_{i=3}^{n} i=\frac{(n-2)(n+3)}{2}
$$

(a) Expand the Left-Hand-Side of the formula. (That is, rewrite it without the " Σ " but with "...")
(b) Prove the formula by mathematical induction.

Solution:

(a) $3+4+5+\ldots+n$
(b) Proof: we prove this formula by induction. Let $\mathrm{P}(n)$ denote the formula

$$
\sum_{i=3}^{n} i=\frac{(n-2)(n+3)}{2}
$$

Basis Step: we consider $\mathrm{P}(3)$. The LHS of $\mathrm{P}(3)$ is 3, and the RHS of $\mathrm{P}(3)$ is $\frac{(3-2)(3+3)}{2}=3$.
Therefore, $\mathrm{P}(3)$ is true.
Inductive Step: we assume $\mathrm{P}(k)$ is true for integer $k \geq 3$. That is,

$$
\sum_{i=3}^{k} i=\frac{(k-2)(k+3)}{2}
$$

[The above is our Inductive Hypothesis (IH).]
[We want to show that $\mathrm{P}(k+1)$ is also true. That is, $\sum_{i=3}^{k+1} i=\frac{(k+1-2)(k+1+3)}{2}$. Or, equivalently,
$\sum_{i=3}^{k+1} i=\frac{(k-1)(k+4)}{2}$. Also, note that $\left.(k-1)(k+4)=k^{2}+3 k-4.\right]$
We now consider $\mathrm{P}(k+1)$.

$$
\begin{aligned}
\sum_{i=3}^{k+1} i & =\sum_{i=3}^{k} i+(k+1) \\
& =\frac{(k-2)(k+3)}{2}+(k+1) \quad\{\text { by IH }\} \\
& =\frac{k^{2}+k-6}{2}+\frac{2 k+2}{2} \\
& =\frac{k^{2}+3 k-4}{2} \\
& =\frac{(k-1)(k+4)}{2}
\end{aligned}
$$

Therefore, $\mathrm{P}(k+1)$ is true.
Thus, combining the Basis Step and the Inductive Step, we can conclude that $\mathrm{P}(n)$ is true for all integers $n \geq 3$.
(15') 3. Prove the following statement by mathematical induction:
$7^{n}-1$ is divisible by 6 , for any integer $n \geq 0$.

Solution:

Proof: we prove this statement by induction. Let $\mathrm{P}(n)$ denote " $7 n-1$ is divisible by 6 ." Basis Step: we consider $P(0) .7^{0}-1=1-1=0$, and $0=6^{*} 0$. So, $P(0)$ is true.

Inductive Step: we assume $\mathrm{P}(k)$ for integer $k \geq 0$. That is, $7^{k}-1$ is divisible by 6 .
Therefore, $7^{k}-1=6 \cdot r$ for some integer r. That is, $7^{k}=6 \cdot r+1$ for some integer r.
[The above is our Inductive Hypothesis (IH).]
[We must show that $\mathrm{P}(k+1)$ is also true. That is, $7^{k+1}-1$ is divisible by 6.]

$$
\begin{aligned}
7^{k+1}-1 & =7 \cdot 7^{k}-1 \\
& =7 \cdot(6 \cdot r+1)-1 \quad\{\text { by IH }\} \\
& =42 r+6 \\
& =6 \cdot(7 r+1)
\end{aligned}
$$

Because r is an integer, $7 r+1$ is also an integer. Therefore, $7^{k+1}-1$ is divisible by 6.
That is, $\mathrm{P}(k+1)$ is true.
Thus, combining the Basis Step and the Inductive Step, we can conclude that $\mathrm{P}(n)$ is true for all integers $n \geq 0$.
(15') 4. Define a sequence $a_{1}, a_{2}, a_{3}, \ldots$ as: $a_{1}=1, a_{2}=3$, and $a_{k}=a_{k-1}+a_{k-2}$ for all integers $k \geq 3$. Use strong mathematical induction to prove that $a_{n}<\left(\frac{7}{4}\right)^{n}$ for all integers $n \geq 1$.

Solution:

Proof: we prove this inequality by induction. Let $\mathrm{P}(n)$ denote $a_{n}<\left(\frac{7}{4}\right)^{n}$.
Basis Step: we consider $\mathrm{P}(1)$ and $\mathrm{P}(2) . a_{1}=1<\frac{7}{4}=\left(\frac{7}{4}\right)^{1}$, so $\mathrm{P}(1)$ is true. $a_{2}=3<\frac{49}{16}=\left(\frac{7}{4}\right)^{2}$, so $\mathrm{P}(2)$ is true. Thus, we have that both $\mathrm{P}(1)$ and $\mathrm{P}(2)$ are true.
Inductive Step: we assume $\mathrm{P}(1), \mathrm{P}(2), \ldots, \mathrm{P}(k)$ are all true for integer $k \geq 2$.That is, $a_{i}<\left(\frac{7}{4}\right)^{i}$ is true for any integer i such that $1 \leq i \leq k$. [This is our Inductive Hypothesis (IH).]
[We must show that $\mathrm{P}(k+1)$ is also true. That is, $a_{k+1}<\left(\frac{7}{4}\right)^{k+1}$.]

$$
\begin{aligned}
a_{k+1} & =a_{k}+a_{k-1} \quad\{\text { by the definition of this sequence }\} \\
& <\left(\frac{7}{4}\right)^{k}+\left(\frac{7}{4}\right)^{k-1} \quad\{\text { by IH }\} \\
& =\left(\frac{7}{4}\right) \cdot\left(\frac{7}{4}\right)^{k-1}+\left(\frac{7}{4}\right)^{k-1} \\
& =\left(\frac{11}{4}\right) \cdot\left(\frac{7}{4}\right)^{k-1} \\
& =\left(\frac{44}{16}\right) \cdot\left(\frac{7}{4}\right)^{k-1} \\
& <\left(\frac{49}{16}\right) \cdot\left(\frac{7}{4}\right)^{k-1} \\
& =\left(\frac{7}{4}\right)^{2} \cdot\left(\frac{7}{4}\right)^{k-1}
\end{aligned}
$$

$$
=\left(\frac{7}{4}\right)^{k+1}
$$

Therefore, $\mathrm{P}(k+1)$ is true.
Thus, combining the Basis Step and the Inductive Step, we can conclude that $\mathrm{P}(n)$ is true for all integers $n \geq 1$.
(20') 5. Define a sequence $b_{1}, b_{2}, b_{3}, \ldots$ as: $b_{1}=2$, and $b_{k}=b_{k-1}+2 \cdot 3^{k}$ for all integers $k \geq 2$.
(a) Calculate b_{2}, b_{3}, b_{4}.
(b) Use iteration to guess an explicit, closed-form formula. That is, express b_{n} as a function of n without "...", " Σ ", or " Π ".
(Hint: you might need to use the formula $1+r+r^{2}+\ldots+r^{n}=\frac{r^{n+1}-1}{r-1}$)
(c) Use to mathematical induction to prove the formula you derived in (b) above.

Solution:

(a) $b_{2}=2+2 * 9=20, b_{3}=20+2 * 27=74, b_{4}=74+2 * 81=236$
(b) We can try iterating b_{n} as follows, by the definition $b_{k}=b_{k-1}+2 \cdot 3^{k}$ for all integers $k \geq 2$.

$$
\begin{aligned}
b_{1} & =2 \\
b_{2} & =b_{1}+2 \cdot 3^{2}=2+2 \cdot 3^{2} \\
b_{3} & =b_{2}+2 \cdot 3^{3}=2+2 \cdot 3^{2}+2 \cdot 3^{3} \\
b_{4} & =b_{3}+2 \cdot 3^{4}=2+2 \cdot 3^{2}+2 \cdot 3^{3}+2 \cdot 3^{4} \\
\cdots & \cdots \\
b_{n} & =2+2 \cdot 3^{2}+2 \cdot 3^{3}+\cdots+2 \cdot 3^{n} \\
& =2+2 \cdot 3^{2} \cdot\left(1+3+3^{2}+\cdots+3^{n-2}\right)=2+18 \cdot \frac{3^{n-1}-1}{3-1}=2+9\left(3^{n-1}-1\right) \\
& =3^{n+1}-7
\end{aligned}
$$

Therefore, we guess $b_{n}=3^{n+1}-7$ for all $n \geq 1$.
(c) Proof: we prove $b_{n}=3^{n+1}-7$ for all $n \geq 1$ by induction. Let $\mathrm{P}(\mathrm{n})$ denote $b_{n}=3^{n+1}-7$ Basis Step: we consider $\mathrm{P}(1)$. The LHS of $\mathrm{P}(1)$ is $b_{1}=2$, and the RHS of $\mathrm{P}(1)$ is $3^{1+1}-7=9-7=2$. Therefore, $\mathrm{P}(1)$ is true.
Inductive Step: we assume $\mathrm{P}(k)$ is true for integer $k \geq 1$. That is, $b_{k}=3^{k+1}-7$.
[The above is our Inductive Hypothesis (IH).]
[We must show that $\mathrm{P}(k+1)$ is also true. That is, $b_{k+1}=3^{k+2}-7$]

$$
\begin{aligned}
b_{k+1} & \left.=b_{k}+2 \cdot 3^{k+1} \quad \text { \{by the definition of the sequence }\right\} \\
& =3^{k+1}-7+2 \cdot 3^{k+1} \quad\{\text { by IH }\} \\
& =(1+2) \cdot 3^{k+1}-7 \\
& =3^{k+2}-7
\end{aligned}
$$

Therefore, $\mathrm{P}(k+1)$ is true.
Thus, combining the Basis Step and the Inductive Step, we can conclude that $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 1$.

