Homework 4

Due on Monday, 6/5, 1:15 PM in class

Name
PID
Honor Code Pledge: I certify that I am aware of the Honor Code in effect in this course and observed the Honor Code in the completion of this homework.

Signature \qquad
(30') 1. Calculate the following sum or product. (I encourage you to include intermediate steps, which may give you partial credits in case you did the math wrong.)
(a)

$$
\sum_{i=3}^{7}(i-5)
$$

(b)

(c)

$$
\left(\sum_{j=6}^{6} j\right)^{2}
$$

(d)

$$
\sum_{i=2}^{5} \sum_{j=1}^{3}(i \cdot j)
$$

(e)

$$
\prod_{i=1}^{3}\left(\sum_{j=1}^{i} j\right)
$$

(f)

$$
\sum_{i=2}^{5} \sum_{j=1}^{i}(i \cdot j)
$$

(20') 2 . Consider the following formula where n is an integer and $n \geq 3$:

$$
\sum_{i=3}^{n} i=\frac{(n-2)(n+3)}{2}
$$

(a) Expand the Left-Hand-Side of the formula. (That is, rewrite it without the " Σ " but with "...")
(b) Prove the formula by mathematical induction.
(15') 3 . Prove the following statement by mathematical induction:

$$
7^{n}-1 \text { is divisible by } 6, \text { for any integer } n \geq 0 .
$$

(15') 4. Define a sequence $a_{1}, a_{2}, a_{3}, \ldots$ as: $a_{1}=1, a_{2}=3$, and $a_{\mathrm{k}}=a_{k-1}+a_{k-2}$ for all integers $k \geq 3$.
Use strong mathematical induction to prove that $a_{n}<\left(\frac{7}{4}\right)^{n}$ for all integers $n \geq 1$.
(20') 5. Define a sequence $b_{1}, b_{2}, b_{3}, \ldots$ as: $b_{1}=2$, and $b_{k}=b_{k-1}+2 \cdot 3^{k}$ for all integers $k \geq 2$.
(a) Calculate b_{2}, b_{3}, b_{4}.
(b) Use iteration to guess an explicit, closed-form formula. That is, express b_{n} as a function of n without "...", " Σ ", or " Π ".
(Hint: you might need to use the formula $1+r+r^{2}+\ldots+r^{n}=\frac{r^{n+1}-1}{r-1}$)
(c) Use to mathematical induction to prove the formula you derived in (b) above.

