Homework 3

Due on Friday, 6/2, 1:15 PM in class

Name
PID
Honor Code Pledge: I certify that I am aware of the Honor Code in effect in this course and observed the Honor Code in the completion of this homework.

Signature \qquad

Determine whether each of the following statements 1-4 is true or false. If it is true, prove it from the definitions (nonetheless, the proof can be either direct or indirect); if it is false, disprove it by a counterexample.
(15') $1 . \forall$ integers m and n, if $2 m+n$ is odd then m and n are both odd.

Solution:

False. Counterexample: Let $m=2$ and $n=1.2 m+n=5$, which is odd, but $m=2$ which is not odd.
(15') 2 . For all integers $n, n^{2}+n+1$ is odd.

Solution:

True.
Proof: Let n be a particular but arbitrarily chosen integer. Then, n is either odd or even.
Case 1: n is odd.
In this case, by the definition of odd numbers, $n=2 k+1$ for some integer k. Therefore,

$$
n^{2}+n+1=(2 k+1)^{2}+(2 k+1)+1=4 k^{2}+6 k+3=2\left(2 k^{2}+3 k+1\right)+1 .
$$

Thus, by definition, $n^{2}+n+1$ is odd.
Case 2: n is even.
In this case, by the definition of odd numbers, $n=2 k$ for some integer k. Therefore,

$$
n^{2}+n+1=(2 k)^{2}+(2 k)+1=4 k^{2}+2 k+1=2\left(2 k^{2}+k\right)+1 .
$$

Thus, by definition, $n^{2}+n+1$ is odd.
Combining Case 1 and Case 2, we can conclude that, for all integers $n, n^{2}+n+1$ is odd.
(15') 3. For all real numbers r, if r^{3} is irrational then r is irrational.

Solution:

True. (The following is a proof by contradiction, you can also do a proof by contraposition.)
Proof: we prove this statement by contradiction. Suppose the statement is false. That is, suppose there exists a real number r such that r^{3} is irrational and r is rational.
Then, by the definition of rational numbers, $r=a / b$ for some integers a and b where $b \neq 0$.
By basic algebra, $r^{3}=a^{3} / b^{3}$.
Because a and b are integers, a^{3} and b^{3} are also integers; because $b \neq 0, b^{3} \neq 0$.
Therefore, by definition, r^{3} is rational. This contradicts the supposition that r^{3} is irrational. Thus, the supposition cannot be true, and the original statement is true
(15') 4. For all integers a and b, if $a \mid b^{2}$ and $a \leq b$, then $a \mid b$.

Solution:

False. Counterexample: Let $a=4$ and $b=6$. Because $b^{2}=36$ and $4|36, a| b^{2}$ and $a \leq b$ is true. However, 4 does not divide b, i.e, $a \nmid b$.

Prove the following statement. You can use the Quotient-Remainder Theorem. That is, assume Theorem 4.4.1 on pp. 180 in the textbook is already proven.
(20') 5. For all integer n, if $3 \mid n^{2}$ then $3 \mid n$.
(Hint: By contradiction and by division into cases while deriving the contradiction.)

Solution:

Proof: we prove this statement by contradiction. We suppose the statement is false. That is, we suppose there exists an integer n such that $3 \mid n^{2}$ and $3 \nmid n$. By the Quotient-Remainder Theorem, $n=3 k$ for some integer k, or $n=3 k+1$ for some integer k, or $n=3 k+2$ for some integer k.
Because $3 \nmid n, n \neq 3 k$ for any integer k. Therefore, $n=3 k+1$ for some integer k, or $n=3 k+2$ for some integer k.
Case 1: $n=3 k+1$ for some integer k.
In this case, $n^{2}=(3 k+1)^{2}=9 k^{2}+6 k+1=3\left(3 k^{2}+2 k\right)+1$.
Therefore, $3 \nmid n^{2}$ (because by the Quotient-Remainder Theorem, it is impossible that both $n^{2}=3 r$ for some integer r and $n^{2}=3 s+1$ for some integer s).
Case 2: $n=3 k+2$ for some integer k.
In this case, $n^{2}=(3 k+2)^{2}=9 k^{2}+12 k+4=3\left(3 k^{2}+4 k+1\right)+1$.
Therefore, $3 \nmid n^{2}$
Combining Case 1 and Case 2, we can conclude that $3 \nmid n^{2}$. However, we supposed $3 \mid n^{2}$. Therefore, $3 \nmid n^{2}$ and $3 \mid n^{2}$, which is a contradiction. Thus, the supposition cannot be true, and the original statement is true.

Prove the following statement. You can use statement 5 above. That is, assume you have correctly proven the statement above.
(20') $6 . \sqrt{3}$ is irrational.
Solution:
Proof: we prove this statement by contradiction. We suppose the statement is false. That is, we suppose $\sqrt{3}$ is rational. By the definition of rational numbers, $\sqrt{3}=a / b$ for some integers a, b where a, b have no common factor (by dividing a and b by any common factors if necessary).
Squaring both sides of $\sqrt{3}=a / b$, we have $3=a^{2} / b^{2}$, i.e., $3 b^{2}=a^{2}$. Therefore, $3 \mid a^{2}$.
By statement 5 above, we have $3 \mid a$.
Therefore, $a=3 k$ for some integer k. Substituting in the equation $3 b^{2}=a^{2}$, we have $3 b^{2}=9 k^{2}$, which is $b^{2}=3 k^{2}$. Therefore, $3 \mid b^{2}$.
By statement 5 above, we have $3 \mid b$.
$\operatorname{By}\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$, we have $3 \mid a$ and $3 \mid b$. That is, a and b have a common factor of 3 . This contradicts the supposition that a and b have no common factor. Thus, the supposition cannot be true, and the original statement is true.

