Homework 3

Due on Friday, 6/2, 1:15 PM in class

Name
PID
Honor Code Pledge: I certify that I am aware of the Honor Code in effect in this course and observed the Honor Code in the completion of this homework.

Signature \qquad

Determine whether each of the following statements 1-4 is true or false. If it is true, prove it from the definitions (nonetheless, the proof can be either direct or indirect); if it is false, disprove it by a counterexample.
(15') $1 . \forall$ integers m and n, if $2 m+n$ is odd then m and n are both odd.
(15') 2 . For all integers $n, n^{2}+n+1$ is odd.
(15') 3. For all real numbers r, if r^{3} is irrational then r is irrational.
(15') 4. For all integers a and b, if $a \mid b^{2}$ and $a \leq b$, then $a \mid b$.

Prove the following statement. You can use the Quotient-Remainder Theorem. That is, assume Theorem 4.4.1 on pp. 180 in the textbook is already proven.
(20') 5. For all integer n, if $3 \mid n^{2}$ then $3 \mid n$.
(Hint: By contradiction and by division into cases while deriving the contradiction.)

Prove the following statement. You can use statement 5 above. That is, assume you have correctly proven the statement above.
$\left(20^{\prime}\right) 6 . \sqrt{3}$ is irrational.

