Comp/Phys/Apsc 715

Lecture 5: Trichromacy, Color Spaces,
Properties of Color

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Administrative

Homework to post by next Thursday \qquad
\rightarrow At least a week ahead of when it is due
\rightarrow At least a week ahead of when it is due

How Important is Color (Hue)?

- Color is Irrelevant
- Color is Critical
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1/23/2014 Color
Comp/Phys/ADsc 715 Taylor \qquad

Color is Irrelevant...

- To determine object shapes \qquad
- To determine layout of objects in space
- To determine how objects are moving
- Therefore, to much of modern life \qquad
- Laboratory assistant went 21 years without realizing he was color-blind \qquad
\qquad
\qquad

Color is Critical... \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Color is Critical...

- To help us break camouflage
- To judge the condition of objects (food)
- Ripe or rotten?
- Poisonous?
- To determine material types
\qquad

1/23/2014 Color \qquad

Uses of Color

- Good for labeling and categorizing
\qquad
-Show classification (labeling)
- Mimic reality
- Draw attention \qquad
- Show grouping
- Poor for displaying shape, detail, or space - Use luminance \qquad

1/23/2014 Color \qquad

Show Classification (Labeling) \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad

Mimic reality

Comp/Phys/Apsc 715 Tayor

Draw attention \qquad
Modelled Toxin Accumulation

Timestep 40
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1/23/2014 Color Comp/Phys/Apsc 775 Taylor 4\%
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Color Models

- Device-derived \qquad
- convenient for describing display device levels - RGB, CMY(K) \qquad
- Intuitive
- based in familiar color description terms \qquad
- HSV, HSB, HLS
- Perceptually uniform \qquad
- device independent, perceptually "uniform"
- CIELUV, CIELAB, Munsell \qquad

1/23/2014 Color
Comp/Phys/Apsc 715 Tavlor \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Opponent Process Theory

\qquad
\qquad

- Cone signals transformed into new channels
- Black/White (Luminance; ignores blue!)
- Red/Green
\qquad
- Yellow/Blue

\qquad
\qquad

3/2014 Color \qquad

Color Naming

- Never "Reddish green" or "Yellowish blue" \qquad
- Across cultures, looking at the appearance of color names
- If only two, they are black and white
- If three, red is next
- Fourth and fifth are \{yellow, green\} (in either order)
\qquad
- Sixth comes blue
- This supports the opponent-color theory \qquad
- Next comes brown
- Then \{pink, purple, orange, gray\} \qquad

1/23/2014 Color
Comp/Phys/Apscs 715 Tavlor \qquad

Hue vs. Luminance

- Spatial Sensitivity
- Red/Green and Yellow/Blue each about 1/3 detail of Black/White
- Stereoscopic Depth
- Pretty much can't do it with hue alone
- Temporal Sensitivity
- Moving hue-change patterns seem to move slowly
- Form
- Shape-from-shading works well
- Shape-from-hue doesn't
- Category: Hue works well!
\qquad

Color Spatial Sensitivity \qquad

It is very difficult to read text that is \qquad isoluminant with its background color. If clear text material is to be presented it is essential that there be substantial luminance contrast
\qquad
with the background color. Color contrast is
not enoush. This narticular examole is
difference is in the yellow blue direction. The
\qquad
only exception to the requirement for
luminance contrast is when the purpose is \qquad
artistic effect and not clarity
\qquad
1/23/2014 color \qquad

Color Temporal Sensitivity \qquad

\qquad
\qquad
\qquad
\qquad

- http://visionlab.harvard.edu/Members/ Patrick/Demos/index.html
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Application: Color for Labeling

- Color is comparatively effective for Nominal \qquad
Information Coding
- Only about four gray values can code
- Can leave luminance channel free for shape perception
\qquad
- Issues to consider
- Distinctness, unique hues, number of labels \qquad
- Contrast with background
- Color blindness \qquad
- Field size
- Conventions \qquad
\qquad

Number of Labels

- Distinctness (Rapid)
- Number of Labels - 5-10 (Healey)
- Unique Hues

- Contrast with Background

1/23/2014 color
Comp/Phis/Apsc 715 Tavor \qquad

Other Issues (1/2) \qquad

- Color Blindness
- Most red/green color blind (10\% of males, 1\%
\qquad females)

\qquad
\qquad
\qquad
\qquad
1/23/2014 Color
Comp/Phw/Apsc 715 Tavior \qquad

Other Issues (2/2) \qquad

- Field Size \qquad
- Avoid small spots, especially in yellow/blue
- Small areas: strong, highly-saturated colors
- Large areas: low saturation with slight differences
- Conventions
- U.S.: Red = danger, Green = life
- Some parts of China: Red = life, Green/white = death \qquad
- Some scientific domains have color conventions
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Trumbo's Univariate Principles

\qquad
\qquad

- Order: ordered values should be represented by perceptually-ordered colors \qquad
- Separation: significantly different levels should be represented by distinguishable colors
\qquad
? \qquad
\qquad
1/23/2014 Color Comp/Phys/Apsc 715 Taylor \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ordered, Separation? \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ordered, More separation?

\qquad

Trumbo's Bivariate Principles

- Bivariate
- Rows and columns: to preserve univariate information,
display parameters should not obscure one another
- Diagonal: to show positive association, displayed colors should group into three perceptual classes:
diagonal, above, below

Not Rows \& Columns or Diagonal

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Some Univariate Color Scales

- Color model component
- Redundant scales
- Double-ended

Color Model Component Scales

- Change a single color model component with other components held constant
- Examples
- Grey scale
- Saturation scale
- Spectrum (hue, rainbow) scale (BOO, HISS!)

1/23/2014 Color Comp/Phys/Apsc 715 Taylor ${ }^{46}$ \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Redundant Color Scales

- Two or more color components varied \qquad together
- Examples
\qquad
- Hue with luminance
- Heated object scale (black body radiation)
\qquad
- Characteristics
- Reinforces signal
- Combines characteristics of simpler scales
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Double-ended Scale

- Two distinct scales joined at neutral middle
- Characteristics
- segments values into two groups
- can emphasize both extremes of data range

1/23/2014 Color
Comp/Phys/ADsc 715 Tavlor \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Consider Data

- Interesting values?
- Position striking colors at interesting values
- Zero in range?
- Double-ended scale
- High spatial frequency? \qquad
- Vary lightness in addition to hue

1/23/2014 Color
Comp/Phys/ADsc 715 Tavlor \qquad

Consider Audience

- Color deficient viewers? \qquad
- Don't depend on red-green differentiation
- Use redundant scales
- Application area conventions?
- Use familiar scales (or at least know when you're not)
- Color associations with variables?
- Use associated color
- Color associations with data ranges? \qquad
- Use red for bad range (in U.S.)
- Use red for hot \qquad
1/23/2014 Color \qquad

Size and Background Effects \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Saturation-size Illusion

Cleveland and McGill '83.
1/23/2014 Color
Comp/Phys/Apsc 715 Tavior

Brown...

- Brown is dark yellow..
- But not when it is alone in a dark room
- Must be surrounded by brighter patches
- Otherwise some shade of yellow
- Be aware that it may not be seen as belonging to the family of yellows.
"I cannot pretend to feel impartial about colours. I rejoice with \qquad
the brilliant ones and am genuinely sorry for the poor
browns." - Sir Winston Churchill

1/23/2014 Color
Comp/Phys/Apsc 715 Tavor \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

References:

- Uses of Color and the four examples, Color Models and the three examples, Univariate, Color Model component (and examples), Redundant (and examples), Color-size illusion, Double-ended (and examples), Multivariate scales (and examples), Evaluating color scales (and examples), Consider Data, Consider Audience: Penny Rheingans
- The remainder are from Colin Ware's book "Information Visualization."

1/23/2014 Color
Comp/Phys/Apsc 715 Taylor \qquad

[^0]: 1/23/2014 Color

