
Comparing 2D Vector Field Visualization
Methods: A User Study

David H. Laidlaw, Robert M. Kirby, Cullen D. Jackson, J. Scott Davidson, Timothy S. Miller,

Marco da Silva, William H. Warren, and Michael J. Tarr

Abstract—We present results from a user study that compared six visualization methods for two-dimensional vector data. Users

performed three simple but representative tasks using visualizations from each method: 1) locating all critical points in an image,

2) identifying critical point types, and 3) advecting a particle. Visualization methods included two that used different spatial distributions

of short arrow icons, two that used different distributions of integral curves, one that used wedges located to suggest flow lines, and

line-integral convolution (LIC). Results show different strengths and weaknesses for each method. We found that users performed

these tasks better with methods that: 1) showed the sign of vectors within the vector field, 2) visually represented integral curves, and

3) visually represented the locations of critical points. Expert user performance was not statistically different from nonexpert user

performance. We used several methods to analyze the data including omnibus analysis of variance, pairwise t-tests, and graphical

analysis using inferential confidence intervals. We concluded that using the inferential confidence intervals for displaying the overall

pattern of results for each task measure and for performing subsequent pairwise comparisons of the condition means was the best

method for analyzing the data in this study. These results provide quantitative support for some of the anecdotal evidence concerning

visualization methods. The tasks and testing framework also provide a basis for comparing other visualization methods, for creating

more effective methods and for defining additional tasks to further understand the tradeoffs among the methods. In the future, we also

envision extending this work to more ambitious comparisons, such as evaluating two-dimensional vectors on two-dimensional surfaces

embedded in three-dimensional space and defining analogous tasks for three-dimensional visualization methods.

Index Terms—User study, vector visualization, fluid flow visualization.
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1 INTRODUCTION

ONE of the goals of scientific visualization is to display

measurements of physical quantities so the underlying

physical phenomena can be interpreted accurately, quickly,

and without bias. Great care is taken in choosing where

such measurements will be made so that inferences about

the underlying phenomena will be correct. How important

is it to craft visualizations analogously, carefully placing

arrows, curves, or other visual icons that display the data?

What are the best ways to craft visualizations?

Many people have addressed, with qualitative or

anecdotal advice, how best to design visualizations [1],

[2], [3]. For example, Ware suggests that vectors placed on a

regular grid are less effective than vectors placed in a

streamline-like (or integral curve) fashion. Analogous

quantitative studies of visualization methods are still very

limited [4], [5], [6], [7], and none address 2D vector

visualization methods. Albeit limited, such quantitative

studies help to form a basis upon which rule-of-thumb

construction measures for vector visualizations can be

postulated.

An earlier version of the study presented here included

only nonexpert users, did not comparatively include LIC in

the analysis, did not include an analysis of user perfor-

mance as a function of flow speed at the user-chosen critical

point locations, included arbitrarily difficult tasks involving

critical points close to the boundary of the visualization and

reported a pessimistic analysis of counting accuracy [8]; we

address those limitations in this paper with new analyses

that go beyond the initial analyses accomplished for that

version.
Our quantitative study of these questions began with a

(naive) hypothesis of the form “When visualizing two-
dimensional vector fields, arrows spatially distributed
using method X are more effective than arrows spatially
distributed using method Y.” We proposed to test the
hypothesis with a user study. The first hurdle which
stymied our progress was an understanding of formulat-
ing and executing a task-based user study. How does one
define “more effective?” Can “more effective” be estab-
lished in a broad-brush fashion, or is it possible to
construct tasks in which for task A method X is more
effective than method Y (in some metric), while for task B
method Y is more effective than method X? After much
deliberation, we decided to define “more effective” via
the performance of users on a set of three tasks derived
from examination of common comparison metrics used in
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flow visualization and based upon domain expert input
as to what are representative tasks within the area of
fluid mechanics. These three tasks and the rationale are
thoroughly described in Section 3. If users could perform
the tasks more accurately and quickly using one of the
methods, we would consider that method more effective
with respect to the task. “X” and “Y” were initially the
first two methods in the list below, but as we designed
the experiment, we realized that broader coverage of the
existing methods would be more valuable. We converged
on the following six visualization methods:

1. GRID: icons on a regular grid,
2. JIT: icons on a jittered grid [9],
3. LIT: icons using one layer of a visualization method

that borrows concepts from oil painting [10],
4. LIC: line-integral convolution [11],
5. OSTR: image-guided streamlines (integral curves)

[12], and
6. GSTR: streamlines seeded on a regular grid [12].

Henceforth, we will refer to each visualization method by
its abbreviated name.

2 VECTOR FIELDS AND VISUALIZATION METHODS

2.1 Vector Field Data Set Generation

To accomplish the user study, we required a controlled set
of stimuli. We first generated approximately 500 two-
dimensional vector field data sets from which images could
be generated. By first generating a database of fields, we
could then create for any particular vector field six different
visualizations, one for each visualization method to be used
as stimuli.

We used Matlab [13] to generate the vector field data
sets. Each data field was represented by a regular grid of
700 by 700 vectors and was generated in the following
manner. For each data set, nine random locations on the
interval ½0; 1� � ½0; 1� were chosen. This was accomplished
for each of nine locations by randomly choosing, with
uniform distribution, a position on the x-axis and then
randomly choosing, with uniform distribution, a position
on the y-axis. At each random location, a vector was
generated such that both components of each random
vector were chosen from a uniform random distribution
between �1:0 and 1:0. The x and y components of these nine
vectors, along with a regular grid of 700 by 700 uniformly
spaced points, were input to the Matlab function griddata

using the “v4” option (for Matlab’s spatial interpolating
function), which, in turn, provided x and y vector
components for the interpolated vector field at each of the
700 by 700 grid points.

To calculate the user accuracy on the critical-point tasks,
we needed to know the correct locations and types of all
critical points within these vector field data sets. The critical
points were located in each vector field using a two-
dimensional Newton-Raphson (root finding) method. In the
Newton-Raphson method, second-order finite differences
are used to form the gradient and Jacobian information
required. We used 150 random initial positions for each
field and iterated the Newton-Raphson solver until a critical
point (root) of the vector field was found. Once a critical

point was located and verified to be a critical point, Matlab
routines based on second-order finite differences formed
the local Jacobian of the field at the critical point and
determined the eigenvalues of the Jacobian, which deter-
mine the type of a critical point. This method was verified
against the TOPO module of the FAST visualization
environment [14] for several of the fields, and showed no
errors. Data fields were discarded if they contained fewer
than one or more than four critical points.

2.2 Visualization Methods

Six visualizations were generated for each vector field, one
for each visualization method. The visualizations for one
vector field are shown in Fig. 1. Both GRID and JIT were
generated using standard Matlab plotting routines. LIC [11]
and LIT [10] were implemented by the authors from
published descriptions. OSTR and GSTR were actualized
using code from Turk and Banks [12].

Each of the visualization methods has parameters that
influence the images created (e.g., the path integration
length in LIC, or the grid spacing in GRID). For each
visualization method, we created three test images over five
values in a range for each parameter. Five of the authors
independently and subjectively estimated which value of a
parameter would be best for performing each of the tasks.
We then viewed them as a group and came to a consensus
value for each parameter based on the tasks that we were
planning. We were generally in accord on the best
parameter value for a given task but that setting sometimes
differed across tasks. We tried to choose a compromise
value that would work as well as possible for all three tasks.
For example, this process led to a 29� 29 lattice for GRID
and a 35� 35 lattice for JIT; tighter spacing in JIT worked
better for the collection of tasks. The following paragraphs
describe the parameter values we chose.

For GRID, a uniformly-spaced lattice of 29� 29 points
was used to span ½�1; 1� � ½�1; 1�. To find the x and y values
of the vector at each of the given points in the lattice,
Matlab’s interp routine with “spline” setting was used to
interpolate down from the 700� 700 point data set to the
29� 29 point data set. The vectors were created by giving
the x; y; vx; vy arrays to the Matlab routine quiver, which
graphically displays vectors as arrow icons. The automatic
scaling provided by quiver was used; no special para-
meters were passed to quiver.

For JIT, a uniformly-spaced lattice of 35� 35 points was
used to span ½�1; 1� � ½�1; 1�. For each point ðx; yÞ, an offset
was computed in both the x and y directions. The offset was
uniformly distributed in ½� �

2 ;
�
2� � ½� �

2 ;
�
2�, where � denotes

the spacing between uniformly-spaced grid points. Once a
jittered grid was created, both the Matlab interp and
quiver functions were used to interpolate and graphically
represent the vectors, as in the uniform grid (GRID) case.

For LIT, a triangle-shapedwedge, with a base one-quarter
its length, represented the flow at points in the field. The area
of eachwedgewas proportional to the speed at its center, and
thewedgeswereplacedusing auniform randomdistribution
such that they would overlap at most 40 percent along their
long direction and would maintain clear space between
wedges of at least 70 percent of their width. Wedges that
would not have satisfied this spacing were not kept. Strokes
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were placed until 250 consecutive attempts failed the spacing

criteria. Theoverall sizeof thewedgeswas scaled so that there

would be about 2,000 strokes in each image.

For LIC, we used a box-shaped convolution kernel of

width 20 pixels. The convolution was performed on a noise

image where each pixel value was set to a uniform random

value in the interval ½0; 1�. To correct for loss of contrast due to
the convolution, we applied an intensity mapping that took

intensity I to Ið4=ðIþ1Þ5Þ.
For OSTR and GSTR, the code from [12], version 0.5, was

modified to allow batch running without a graphical

display and to have the optimization process stop after

60 seconds, without requiring manual intervention. OSTR

was invoked with opt 0.017 given to the stplace

program (the “opt 0.017” parameter invokes optimal

streamline placement using the algorithm from reference

[12] with a separation choice of 0.017), while GSTR was

invoked with square 23 .2 (streamlines 20 percent of the

image width each centered on a square grid of 23 points in

each direction), and both were plotted with “fancy arrows.”

All other options to OSTR and GSTR were left as the

defaults.

3 TWO-DIMENSIONAL VECTOR TASKS

The tasks we used to evaluate the effectiveness of

visualization methods needed to be representative of

typical interactions that users perform with visualizations,

simple enough that users could perform them enough times

for us to calculate meaningful statistics, and able to provide
an objective measure of accuracy.

We chose fluid mechanics as our “representative”
scientific field because it frequently utilizes vector visuali-
zations as a means of studying physical phenomena. We
searched the literature and interviewed fluid mechanics
researchers to identify good representative tasks. Two of the
tasks, locating critical points and identifying their types,
were derived from motivations behind the development of
many of the visualization methods that we tested. Critical
points are the salient features of a flow pattern; given a
distribution of such points and their types, much of the
remaining geometry and topology of a flow field can be
deduced, since there is only a limited number of ways to
join the streamlines. Beyond their importance for the
interpretation of vector fields, these tasks are testable: we
can measure how accurately a user determines the number,
placement, and type of a collection of critical points in a
given image.

Fig. 2 shows an example stimulus for locating all the
critical points in a vector field. The GSTR method is used in
this example. Users indicated the location of each critical
point with the mouse and pressed the “Enter” key (or
clicked on the “Next Image” button) when finished. Users
were not allowed to delete or move their chosen points
because editing operations tend to significantly increase the
variability of response times, making statistical compar-
isons more difficult. We realized that this limitation on the
user’s interactions might reduce accuracy but we felt that
the benefit of more precise timing was an appropriate
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Fig. 1. One of the approximately 500 vector fields visualized with each of the six visualization methods.



tradeoff. The locations of all chosen points and the time to

choose them were recorded.
Fig. 3 shows an example stimulus for identifying the type

of a critical point in a vector field. A preimage with a red

dot indicating the location of the critical point to identify

appeared for 500 ms before the visualization. The user then

selected the type of critical point from the five choices at the

bottom of the display using the mouse: attracting focus,

repelling focus, attracting node, repelling node, and saddle.

The critical point type selected and the response time were

both recorded.
In addition to these critical-point tasks, we identified a

third task that is different in character from the other tasks,

yet important in interpreting two-dimensional vector

fields—an advection task. This task is motivated by an

implicit criterion sometimes mentioned when qualitatively

examining visualization methods: The ability of a method to

show the flow direction globally. In this task, the user is

presented with a dot inside a circle. The user must identify

where the dot will intersect the circle as it is carried by the

flow.

Fig. 4 shows an example stimulus for performing the
advection task with the LIT method. The user chose the
point on the circle where a particle, advected from the
center dot, would intersect the circle. The user chose the
intersection point using the mouse and then pressed the
“Enter” key on the keyboard or the “Next Image” button on
the screen to continue to the next stimulus. The coordinates
of the chosen point and the response time were both
recorded. A small red icon in the lower left corner indicated
the signed direction of the vector field at the location of the
icon. This is needed for LIC, which does not capture the
sign of the vector field; it is included in all of the methods to
avoid biasing results.

In summary, the three tasks are:

. choosing the number and location of all critical
points in an image,

. identifying the type of a critical point at a specified
location, and

. predicting where a particle starting at a specified
point will advect.

The tasks that we have chosen are testable and, we
believe, representative of many of the real uses of these
visualizations. As such, they are potentially predictive of
the performance of real users in using these kinds of
visualizations. Of course, these three tasks do not encom-
pass all possible tasks for which a fluids scientist would use
vector visualization. For example, combinations or mod-
ified versions of these tasks may be more or less difficult
than straightforward generalizations would predict. How-
ever, performance on these tasks seems reasonably likely to
generalize to performance on other similar or aggregate
tasks.

4 EXPERIMENTAL DETAILS

4.1 Timing and Training

Fig. 5 shows the timing of the study. Users first saw a text
display for general training describing the goals of the
experiment and the three tasks in general terms. Three parts
of the experiment followed these instructions, one part for
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Fig. 2. The experimental setup for the critical point location task. The

user was instructed to use the mouse to indicate the locations of all the

critical points in each given vector field. The GSTR method is shown but

each user viewed all six methods during the course of the experiment.

Fig. 3. The experimental setup for the critical point type identification task. A red dot indicating the critical point to identify appeared in a blank frame

(the first panel) for 500 ms before the visualization was displayed (the second panel). The user chose the type for that critical point from the list of

icons at the bottom by clicking on the corresponding icon. The GSTR method is shown but each user viewed all six visualization methods during the

course of the experiment.



each task. Within each part, an initial text display described

the task in more detail. For each task, the six visualization

methods were tested each in a separate block of trials. The

task instructions were followed by eight untimed training

trials; in a pilot study, two users were found to converge to

reasonable accuracy after eight example stimuli. For each of

these untimed cases, the correct answer was provided after

the user completed the task so that users were consistently

trained before the timed tasks. After the training period, the

user performed 20 timed instances of the task. Users

performed this training/testing sequence for each visuali-

zation method before moving on to the next task.
A Java program written specifically for this experiment

presented the stimuli and recorded the data. The program

pre-loaded all images at the beginning of a block so that

timing would be consistent for each stimulus. A several-

second pause before each block, however, did cause some

small problems that are discussed later.
To avoid biasing the results, the ordering of tasks and of

visualization methods within the tasks were each counter-

balanced with a replicated randomized Latin square design

[15]. For the testing (timed and recorded) phase of each

task, 120 images were generated; each block of 20 images

within that 120 was assigned to a visualization type per

user, counterbalanced with a randomized Latin square

design.

4.2 Participant Pool

Two cohorts of participants were tested: “nonexperts” and

“experts.” We distinguished between expert and nonexpert

users because we hypothesized that experts might perform

with a bias toward tools similar to those they already use.

For nonexperts, we wanted participants who might use

such tools in the future for their work but who had not yet

started to do so. Nonexperts were undergraduate science

majors that had studied applied math but had not studied

fluid mechanics. Experts were faculty or graduate students

studying fluid dynamics.
Data for 12 nonexpert participants and five expert

participants were successfully acquired and are reported

here. Users were compensated for their participation.

5 RESULTS AND DISCUSSION

A great debate rages concerning the use of standard null

hypothesis significance testing techniques for analyzing
behavioral data [16], [17]. Some practitioners advocate

employing these techniques and claim that researchers
misunderstand how to use them correctly [18], [19], [20].

Others suggest that observing the means and standard
errors across conditions is sufficient for understanding the

pattern of results and the effect of each condition on the
dependent measures [21], [22], [23]. We have chosen to use

a graphical technique that allows us to make statistical
inferences from the confidence intervals displayed around

each condition mean. This technique utilizes inferential
confidence intervals [20]. With these confidence intervals,

the figures indicate a statistically significant difference to
the p ¼ 0:05 level between any two means if the intervals

between the two means do not overlap.
The current study uses a mixed-model or cross-plot

design (also called a cross-sectional design in biomedical

research). This type of experimental design contains both

between-subjects and within-subjects factors. In this design,
users participate in only one of the independent levels of

the between-subjects factor while participating in all of the
levels of the within-subjects factor. In this study, the one

between-subjects factor is expertise (expert or nonexpert),
and the one within-subjects factor is visualization method

(the six methods previously described).

5.1 Expertise

One of the primary interests of this study was to determine
if differences existed between expert fluid dynamics

researchers and nonexperts in their abilities to perform
the three tasks with the six visualization methods. We

performed an analysis of variance between the two groups
and found no statistically significant differences between

the groups for any of the three tasks. Fig. 6 shows a
comparison of the visualization methods for the critical

point identification task. Results displayed are the means
and 95 percent inferential confidence intervals for mean

percent error for critical point identification and the
associated response time measure. We chose to show this

graph as representative of the comparison between the two
groups since the mean error for critical point type

identification resulted in the largest difference amongst
the three tasks (F ð1; 15Þ ¼ 2:297; p ¼ 0:150). However, as the

figure shows, this difference still was not statistically
significant as the confidence intervals between the groups

overlap in both graphs.
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Fig. 4. The experimental setup for the advection task. The user chose
the point on the circle where a particle would end up if advected from the
center of the circle. The LIT method is shown but each user viewed all
six visualization methods during the course of the experiment.

Fig. 5. Ordering of tasks in the experiment.



The analyses of the interactions between the groups and
the visualization methods also resulted in no statistically
significant differences for all of the tasks. This result implies
that both groups exhibited similar response patterns across
the visualization methods for all of the tasks. Because we
did not observe significant differences between the groups,
and found no significant group by visualization method
interactions, the remainder of our analyses (figures, statistics,
and z-scores) represent the main effect of visualization type.

5.2 Visualization Method

There are severalmethods for analyzingwithin-subjects data.
We employed several of these techniques, including using
analysis of variance (ANOVA) to test the omnibushypothesis
that all methods were not different, followed by pairwise t-
tests to directly compare the means of each of the visualiza-
tion methods to the others, and graphical techniques for
displaying the means and confidence intervals for each
method. We also utilized several techniques for controlling
the Type I error (the probability of rejecting a true null
hypothesis) across each task measure. Also, when within-
subjects data violate the sphericity assumption, i.e., differ-
ences between every pair of condition levels must have the
same population variance, the use of the pooled mean-
squared error term in any analysis is suspect [15], [24].

For analyzing the effect of the visualization methods on
each measure, we used an approach to control for the
violation of the sphericity assumption by calculating a
standard error estimator based on normalized interaction
variances for each condition [24]. Setting the experiment-
wise probability of committing a Type I error at 0.05
(p ¼ 0:05), and further controlling for multiple comparisons
between the condition means (p ¼ 0:0033 for each unique
pairwise comparison), we obtained 95 percent inferential
confidence intervals based on separate mean-squared error
terms for each condition. These intervals allow us to
graphically determine the statistical differences between

the means of the visualization methods; nonoverlapping
confidence intervals between two means indicate a statis-
tically significant difference between those two means.

Figs. 7, 8, 9, 10, 11, 12, 13, and 14 graph the results of the
data analysis across the visualization methods. They are
organized so that higher values on the vertical axes
generally indicate greater error or slower performance
(i.e., are worse). The horizontal axis shows the six
visualization methods. Mean values are shown with error
bars that are 95 percent inferential confidence intervals [20].

Some trials were dropped from the data collected due to
timing issues with the software, confounds with the flow
field data set, or timing issues with user responses. This is
detailed below in the analysis associated with each task.

5.3 Advecting a Particle

One trial was dropped from the data analysis because its
associated response time was less than 1,500 ms and
probably represented a user responding before the test
stimulus was completely loaded. An additional 11 trials
were dropped from the analysis for LIC because no possible
intersection point existed in the opposite flow direction due
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Fig. 6. These graphs show the results of the between-subjects analysis
of expertise for the critical point identification task. The first graph shows
the mean percentage of incorrect identifications, while the second graph
shows the mean response time measure. The error bars shown are
95 percent inferential confidence intervals based on separate mean-
squared error terms for each group to compensate for the lack of
homogeneity of variance and unequal sample sizes; nonoverlapping
bars indicate a statistically significant difference between those means.
Both graphs show no statistically significant difference between the two
groups. Differences between groups are also not statistically significant
for all other measures, with p > 0:150.

Fig. 7. Mean absolute angular error for the advection task. The error
bars shown are 95 percent inferential confidence intervals; nonoverlap-
ping bars indicate a statistically significant difference between those
means. The graph indicates that user performance for the advection
task was better with OSTR than with any of the other visualization
methods, including GSTR. Performance using GSTR was also better
than LIC and the two arrow-based methods (GRID and JIT) but not
statistically different from LIT.

Fig. 8. Mean time to perform the advection task in seconds. The error
bars shown are 95 percent inferential confidence intervals; nonoverlap-
ping bars indicate a statistically significant difference between those
means. The graph indicates that users took significantly longer to
perform the advection task using LIC than using OSTR, GSTR, and
GRID.



to a critical point near the calculated point of intersection. A

detailed discussion of this analysis follows.
For the advection task, error was measured as the

absolute angle error between the user-chosen intersection

point and the correct intersection point. In order to

normalize the distribution of scores against an observed

floor effect, this data, and the associated response time data,

were log-transformed before analysis. Also, to compensate

for the lack of any cue to flow direction in the LIC method,

we calculated the absolute angle error for this method

differently from the others. For LIC, we calculated the

minimum angle error as the minimum between the absolute

angle error measured from the correct intersection point

and the intersection point for flow in the opposite direction.

Eleven trials were dropped from this analysis because a

critical point prevented the calculation of the correct

intersection point in the opposite flow direction. The

absolute angle error from the opposite flow direction

intersection point was used for about 36 percent of the

total trials for the LIC method across all users for this task.
Mean angular error results for the advection task are

shown in Fig. 7. This figure shows that advection error was

greatest with the “icon” methods and LIC. Users exhibited

the least error for the task using OSTR. The graph also

shows that, while GSTR forced fewer errors than GRID, JIT

and LIC, performance using GSTR was not significantly

different from performance using LIT.
We conjecture that the LIC method suffered because the

images do not display the sign of the vector field. The single

directionality icon in the corner of the stimulus is too

difficult to propagate across the image to correct for this, as

it was intended. Task accuracy is better for OSTR than for

the other methods. This may be because the uniform

distribution of integral curves throughout the field offers a

single integral curve to follow for many advection cases.

Most of the other methods require chaining together many

icons to perform advection.

Task performance times are shown in Fig. 8. As
previously stated, statistics for this measure were also
calculated on the log of the response time to normalize
against an observed floor effect. Performance with the LIC
method was slowest compared to all but JIT and LIT. This
slow performance was most likely due to directional
ambiguities inherent in the method. In general, the other
methods performed similarly.

For the advection task, OSTR is more accurate than the
other methods. For response time, most of the methods
elicited response times that were not statistically different
from each other, with the exception of the LIC method,
which was significantly slower than most of the other
methods.

5.4 Locating Critical Points

Of 2,040 trials, 114 (5.5 percent) were dropped from the
analysis; in each case user response time was less than
2,000 ms, total time recorded for the trial was less than the
individual times recorded for locating each critical point, or
the user did not make a response.

During data analysis, we realized that we did not control
well for critical points near the borders of the images (either
inside or outside). We feared that this oversight biased
users in choosing critical point locations. We tried several
methods to compensate for this bias during data analysis.
Several of the methods involved removing individual
critical points that were near the image borders, removing
user-chosen critical points near the image borders, or
performing both data manipulations in an analysis run.
We also tried dropping all trials associated with data sets
that two authors determined contained ambiguous infor-
mation near the image borders. None of these data
manipulation techniques yielded results significantly dif-
ferent from the original analysis that included all trials and
critical points. The following analyses and figures contain
all user data not previously excluded for timing issues, as
described in the preceding paragraph.
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Fig. 10. Mean error magnitude for locating critical points. Error
magnitude is the distance between a user-chosen point and the nearest
critical point, expressed as a fraction of half of the visualization size.
User-chosen points were matched with the nearest real critical point.
The error bars shown are 95 percent inferential confidence intervals;
nonoverlapping bars indicate a statistically significant difference
between those means. Users were worst at locating critical points using
the GRID and JIT methods and best using the GSTR and LIC methods
(although it should be noted that LIC is not statistically different from
LIT). User performance using LIT and OSTR was similar and fell in
between the poor performance of GRID and JIT and the good
performance of LIC and GSTR.

Fig. 9. Percentage of trials in which users incorrectly identified the
number of critical points in a stimulus image. The error bars shown are
95 percent inferential confidence intervals; nonoverlapping bars indicate
a statistically significant difference between those means. Users
committed more errors counting the number of critical points in each
image using the GRID and JIT methods than using the LIC, OSTR, or
GSTR methods. Mean performance using LIT fell in between these two
groups of methods, although the error rate was not statistically different
from either group.



Fig. 9 shows the percentage of trials in which users
incorrectly identified the number of critical points in the
given stimulus image. GRID and JIT are generally least
accurate by this measure, although they are not signifi-
cantly different from the LIT method. LIC, OSTR, and
GSTR do similarly well, with users incorrectly locating
the critical points in about 30-35 percent of the trials
(none of these methods are statistically different from
performance with LIT).

A second error measure for this task was the distance
from the user-chosen critical points to the actual critical
points (see Fig. 10). Statistics for this distance were
calculated on the log of the distance as a normalizing
transform. Statistics were calculated for all user-chosen
critical points such that users’ points were matched with the
nearest real critical point. A least-squares fit was used to
find the closest critical points in all cases.

As demonstrated in Fig. 10, user performance was least
accurate for GRID and JIT and most accurate with LIC and
GSTR, although the performance difference between LIC
and LIT is not statistically significant. Users also showed
similar performance for locating critical points using the
LIT and OSTR methods and this performance fell between
the poor performance of GRID and JIT and the good
performance of LIC and GSTR.

Fig. 11 shows performance times for the six visualization
methods; statistics were calculated on the log of the time
due to the observed floor effect and were taken over all
images. While the results with LIC and LIT were not
significantly different from the results with OSTR and
GSTR, both methods elicited relatively fast user perfor-
mance. It should be noted that although users spent more
time considering the images for GRID and JIT compared to
LIT and LIC, users still performed rather poorly in actually
locating the critical points using these methods compared to
LIT and LIC.

We also performed an analysis on the flow speed at the
user-chosen points. The flow speed was calculated by
interpolating the velocity based on the user-chosen posi-
tions in the given flow field. We believed visualization

methods that represented velocity might show slightly
better user performance for placing critical points; such
methods would represent the decrease in flow speed
around the critical points (where flow speed is zero) and
allow users to select them more accurately. Fig. 12 shows
that LIT, which displays flow velocity most clearly of all the
methods, exhibits good user performance. Surprisingly, LIC
and GSTR, which do not explicitly display flow velocity,
elicited user performance that was not statistically different
from user performance using LIT. The results also show
that JIT and GRID, which directly display flow velocity, did
not elicit good user performance compared to LIT, LIC, and
GSTR. These results are also consistent with the results of
the analysis based on the distance of user-chosen critical
points from the actual points.

Overall for this task, GRID and JIT elicit poor user
performance for most of the task measures while the other
methods generally exhibit fast and accurate performance.

5.5 Identifying Critical Point Type

Only one trial was dropped from the data analysis for the
critical point type identification task. This trial had a user
response time of zero, possibly due to the user clicking
multiple times at the end of the practice trials (for LIC) and
this input propagating to the first test trial. The task
response times were log-transformed to correct for an
observed floor effect.

The percentage of critical points identified incorrectly by
users for each visualization method is shown in Fig. 13. The
results show a statistically significant difference in user
response times using GSTR compared to LIC and JIT. No
other statistically significant differences are apparent in the
results.

Fig. 14 shows user response times for each of the
visualization methods on the critical point identification
task. The results indicate a decreasing pattern of perfor-
mance, which translates into an overall improvement in
user response time, from the “icon” methods to the
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Fig. 12. Mean flow speed at user-chosen critical point locations. This

measure was computed over all trials and the log of the speed was used

to normalize the distribution prior to analysis. The error bars shown are

95 percent inferential confidence intervals; nonoverlapping bars indicate

a statistically significant difference between those means. The results

show that the flow speed at user-chosen points was fastest using JIT

and slightly slower using GRID and OSTR. Flow speed at the user-

chosen points was slowest using LIT, LIC and GSTR. These results

indicate that LIT, LIC and GSTR represented the lower speeds around

the actual critical points better than the other methods.

Fig. 11. Mean time to locate critical points. This measure was computed
over all trials. The error bars shown are 95 percent inferential confidence
intervals; nonoverlapping bars indicate a statistically significant differ-
ence between those means. These results show that while users took on
average one second longer to perform the critical point identification task
using GRID and JIT than using OSTR and GSTR, a statistically
significant result was not obtained. However, users did take significantly
longer using GRID and JIT than using LIT and LIC.



streamline methods. The results also indicate that user
response times using the streamline methods (LIC, OSTR,
and GSTR) were significantly faster than using the arrow-
based methods (GRID and JIT). GSTR also elicited faster
performance than LIT.

For this task, while user critical point identification error
was similar across the six visualization methods, user
response times were significantly faster for the streamline
methods (LIC, OSTR, and GSTR) than for the arrow-based
methods (GRID and JIT).

5.6 Analysis Details

Statistics were computed using all of the data (after any
transformation such as the logarithm or dropping of trials
as previously discussed) of a given user for a given
visualization type and task. As discussed above, we chose
to analyze the data using a graphical technique that allows
us to draw statistical inferences from the confidence
intervals displayed around each condition mean. This
technique utilizes inferential confidence intervals [20]. The
inferential confidence intervals displayed in each figure
indicate a statistically significant difference to the p ¼ 0:05

level between any two means if the intervals between the
two means do not overlap.

For the critical point location task, the number of critical
points ranged from one to four with a median value of three
and mean of 2:683. For the advection task angular error,
Batschelet [25] states that circular statistics are unnecessary
for angular differences if the sign of the angular difference
does not matter, and therefore standard linear statistics
were used on the absolute value of the angular error.

5.7 Normalizing Visualization Methods

We attempted to normalize the visualization methods by
setting their parameters to optimal values for our tasks.
However, the normalization might have been done more
rigorously. With a different tuning of the methods, results
might have been different. We did attempt to balance the
parameters to perform as well on all of the tasks as possible.
A more formal study for each method could have measured
performance of users with each method using different

parameter settings, allowing us to choose the parameters
more objectively.

We considered an alternative normalization as well:
creating images that had a comparable “density.” However,
we were not able to define density for all methods and also
found that the optimal parameter settings for different
methods produced images with densities that were quite
different. As a simple example, the GRID and the JIT
methods were very similar, and yet the optimal number of
icons differed by 45 percent. Given the difficulties in
specifying this approach, we opted for the optimal para-
meter settings previously described.

5.8 Data

Our randomly constructed two-dimensional vector data
sets were not drawn from experimental or computational
fluid flow examples. However, they are two-dimensional
vector fields, well sampled, with good continuity, and with
moderate numbers of critical points. They also contain the
different types of critical points in the ratios one would
expect for fluid flow data. Fluid researchers found their
appearance representative. While an alternative construc-
tion or source of data might be interesting to test,
particularly if it was representative of incompressible flow
or some other constrained type of vector field, we felt that
the construction we used was a reasonable compromise.

5.9 Tasks Involving Speed and Other Quantities

The three tasks that we chose did not involve analyzing
speed (except loosely, in the case of critical points) or other
data values. We chose not to extend the task set, because
experiment time would have been prohibitively long and
the other tasks were more important.

6 CONCLUSIONS

In Fig. 15, we present z-scores calculated for each visualiza-
tionmethod for each task. For each task, the z-scores represent
the direction and distance of the performance for each
visualization method from the mean performance for that
task in units of standard deviation. We can use these
normalizedmeasures to compare the pattern of performance
for eachmethodacross tasks. Scores above zero indicatemore
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Fig. 13. Percentage of trials in which users misidentified the type of the
given critical point. The error bars shown are 95 percent inferential
confidence intervals; nonoverlapping bars indicate a statistically
significant difference between those means. While the results show a
statistically significant difference in performance comparing GSTR to
LIC and JIT, no other statistical differences exist among the visualization
methods.

Fig. 14. Mean time to identify critical point type. The error bars shown
are 95 percent inferential confidence intervals; nonoverlapping bars
indicate a statistically significant difference between those means. The
results indicate that users were slower to respond using GRID and JIT
than using LIC, OSTR and GSTR. Users also responded faster using
GSTR than using LIT.



error or slower performance on the task, while scores below
zero indicate less error or faster performance. From Fig. 15,
combinedwith the previously discussed results, we can infer
many things; we now present some of our observations.

Our original motivating hypothesis, that GRID would
perform better than JIT for most tasks, was not validated—
user performance was statistically different for these two
methods for only one of our dependent measures (mean
flow speed at user-chosen critical point locations). Addi-
tionally, we found that these two arrow-based methods
exhibited similar patterns of performance across all of the
task measures. Fig. 15 shows that these methods elicited
below average (greater than 0.5 standard deviations above
the mean) performance for all of the task measures, except
advection response time for which all (but LIC) of the other
methods performed similarly.

Fig. 15 shows that GSTR exhibited a consistent pattern of
above average performance over all of the task measures.
The good performance of GSTR on these tasks is interesting
because it consists of integral curves seeded on a regular
grid. While some sources suggest that the seeding will
introduce biases into the visualization, those biases do not
seem to have hindered performance in this study. Perhaps
the fact that the streamlines are significantly longer than the
grid spacing hides a bias that might otherwise be
introduced.

Performance using OSTR was above average for the
advection and critical point type identification tasks; the
clear flow lines and directionality of the icons in OSTR
probably contributed to users performing well in these
tasks. However, the lack of icon density or speed informa-
tion may have caused users to have difficulty using OSTR
for the critical point locating task relative to performance on
the other tasks (see Fig. 15).

On the other hand, the pattern of performance with LIC
was almost the opposite of OSTR. Fig. 15 shows that user

performance with LIC was well above average for the
critical point locating task and below average for the
advection and critical point identification tasks, with the
exception of response time performance during the latter
task. While LIC and OSTR share the visualization of clear
streamlines in common, LIC does not display any flow
direction information. This information is critical for
determining particle advection and helps to disambiguate
critical point types (i.e., users could quickly decide whether
a critical point was a focus, saddle or node but were unable
to accurately determine attraction versus repulsion). Con-
versely, the density of the streamlines in LIC provided clear
points in the stimulus images where the critical points were
located, facilitating performance for that task.

Fig. 15 shows that the LIT method elicited average user
performance across most of the tasks relative to the other
methods. Performance using LIT was above average for
flow speed at user-chosen critical points and for response
time for the critical point location task. These results seem
to be consistent with the icons used in the LIT method
showing flow speed (as the icons grow and shrink in the
image) and critical point location (icon placement leaves
distinct white areas at the critical point locations).

While theperformanceof specificmethods is interesting, it
is perhaps more valuable to look at common aspects of the
methods that may explain good performance. Several factors
seemed to be correlated with methods that performed well.
First, methods that had a clear representation of the flow
structure, as well as a good indication of the vector sign,
supported consistently good performance across all task
measures. This includes the OSTR, GSTR, and LIT visualiza-
tion methods. Not surprising, methods that had a clear
indication of critical point location performed well on the
critical point location task. These included LIC,where critical
points were indicated by the anomalous structure of the flow
near the critical points, LIT, where the area of the wedge
shapes shrinks to leave clear white regions around critical
points, andGSTR,where the overlapping streamlines tend to
cluster near the critical points.

Using information about which visualization features to
include, it may be possible to modify or combine visualiza-
tion methods to improve user performance. However, we
caution against methods that directly support only the
specific tasks described. These tasks are a part of the process
of understanding a 2D vector field but there is also an
overall understanding of the field that goes beyond them.
This and other observations were taken from interactions
with expert designers [26].

Performance of nonexperts and experts did not differ
significantly. We saw some loose trends suggesting that
experts might be slightly more accurate and slightly slower
than nonexperts, but the differences were not statistically
significant. We draw two inferences: first, the training at the
beginning of the study was sufficient to acclimate the
nonexpert users to the visualization methods and study
tasks; and second, the more readily available nonexpert
population may be effectively used for determining trends
also seen in the expert population.

We carefully considered the methodology to use for our
data analyses. We first decided to perform standard null
hypothesis significance testing, calculating the omnibus
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Fig. 15. z-scores for each visualization method calculated for each task
measure. The z-scores represent the difference between the mean
performance for a method and the mean performance for all methods for
each task. This difference is divided by the standard deviation of the
mean performance for each task to provide a measure with units of
standard deviation. This transformation allows comparisons between the
relative patterns of performance of each method across the task
measures. The categories along the x-axis represent the task measures:
ADV (advection) error and time; LOC (critical point location) counting
error, distance error, flow speed error, and time; and TYPE (critical point
type identification) error and time. Scores above zero indicate more error
or slower performance on the task, while scores below zero indicate less
error or faster performance.



ANOVA for each task measure followed up by posthoc
pairwise comparisons of the means. After creating our
figures and weighing their utility for explaining the results,
we decided to try a graphical analysis of the data using
inferential confidence intervals [20]; these confidence
intervals included a standard error estimator based on the
normalized interaction variance for each condition [24].
These calculations allowed us to control for violations of the
homogeneity of variance and covariance assumptions and
also control the experimentwise Type I error at the nominal
rate of 0.05. Using the inferential confidence intervals also
allowed us to determine statistical differences between any
condition means for each task measure by looking at the
associated figure. We concluded that this method was
optimal for conveying our results to the reader because it:
1) correctly controlled for statistical assumptions and
experimentwise alpha level and 2) allowed the reader to
quickly and easily determine the pattern and statistical
significance of the results by observing the task measure
figures.

Finally, we envision as a future project the extension of
this work to 3D visualization techniques. It is not apparent
that conclusions drawn within this work for 2D techniques
extend naturally. For instance, in 3D, dense representations
around critical regions my obfuscate other important
features. Though somewhat frustrating, the move to 3D
will probably require us to go back to the first principles of
user studies and build a proper 3D study.

In summary, we have presented comparative perfor-
mance results for three two-dimensional vector visualization
tasks using six visualization methods. The choice of tasks
clearly influences the results. The tasks seem representative
of the types of tasks that fluids researchers want to perform
from visualizations, although they could clearly be aug-
mented. Our results show differences among the methods
and suggest that the methods that attempt to visually
represent integral curves, indicate critical points, and show
flow directionality support better task performance.
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