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Appendix A. SBA Programming Language Summary 
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[ ACTION I [ 

SEQUENCE OPERATION OBJECT CONDITION I 
(INFORMATION) (SEQUENCE) (SEND) 

oPj2A/,ON OPERAT,ON 

XXX - c a n  b e  a n y  p r o g r a m  n a m e .  

INVOCATION) 

( M A N U A L )  
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of Data Structures 

J o h n  G u t t a g  
U n i v e r s i t y  o f  S o u t h e r n  C a l i f o r n i a  

Abstract data types can play a significant role in the 
development of software that is reliable, efficient, and 
flexible. This paper presents and discusses the applica- 
tion of an algebraic technique for the specification of 
abstract data types. Among the examples presented is a 
top-down development of a symbol table for a block 
structured language; a discussion of the proof of its 
correctness is given. The paper also contains a brief 
discussion of the problems involved in constructing 
algebraic specifications that are both consistent and 
complete. 

Key Words and Phrases: abstract data type, cor- 
rectness proof, data type, data structure, specification, 
software specification 

CR Categories: 4.34, 5.24 

Appendix B 

In  this section we i l lustrate how typical Query-by-  
Example  queries  and SBA programs can be mapped  
into predicate-calculus- l ike expressions.  The  examples  
chosen are Q1,  Q2 from Sect ion 2 and  p rogram 4 from 

Section 4. 

Q I :  {X: = IY(X,RED,Y)@TYPE}  
Q2: {X: = I Y ( ( X , Y ) ~ S A L E S  A 

( Y , P A R K E R )  E SUPPLY)}  

Program 4: {(X,Y): ( X , Y ) @ C R E D I T  D E C I S I O N  

A 3 z 3 w 3 u  
( ( U , Z ) E C R E D I T  R A T I N G  

A ( X , U , W ) E O R D E R )  
A IF (Z  = A1 A W < 1 0 0 0 0 )  

--> Y = YES} 

The  formal  syntax of the Que ry -by -Example  da tabase  
language  is found  in [7]. 
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1.  Introduct ion 

Dijkstra [4] and many others have made the point 
that the amount  of complexity that the human mind can 
cope with at any instant in t ime is considerably less than 
that embodied in much of the software that one might 
wish to build. Thus the key problem in the design and 
implementat ion of large software systems is reducing 
the amount  of complexity or detail that must be consid- 
ered at any one time. One way to do this is via the 
process of abstraction. 

One of the most significant aids to abstraction used 
in programming is the self-contained subroutine. At the 
point where one decides to invoke a subroutine,  one 
can (and most often should) treat  it as a "black box."  It 
performs a specific arbitrarily abstract function by 
means of an unprescribed algorithm. Thus, at the level 
where it is invoked, it separates the relevant detail of 
"what"  from the irrelevant detail of "how."  Similarly, 
at the level where it is implemented,  it is usually unnec- 
essary to complicate the "how"  by considering the 
"why,"  i.e. the exact reasons for invoking a subroutine 
often need not be of concern to its implementor .  By 
nesting subroutines, one may develop a hierarchy of 
abstractions. 

Unfortunately,  the nature of the abstractions that 
may be conveniently achieved through the use of sub- 
routines is limited. Subroutines, while well suited to the 
description of abstract events (operations),  are not par- 
ticularly well suited to the description of abstract ob- 
jects. This is a serious drawback,  for in a great many 
applications the complexity of the data objects to be 
manipulated contributes substantially to the overall 
complexity of the problem.  

2.  The  Abstract ion o f  Data  

The large knot of complexly interrelated attributes 
associated with a data object may be separated accord- 
ing to the nature of the information that the attributes 
convey regarding the data objects that they qualify. 
Two kinds of attributes, each of which may be studied 
in isolation, are: 

(1) those that describe the representat ion of objects 
and the implementat ions of the operations associ- 
ated with them in terms of other objects and opera- 
tions, e.g. in terms of a physical store and a proces- 
sor 's order code; 

(2) those that specify the names and define the ab- 
stract meanings of the operations associated with 
an object.  Though these two kinds of attributes are 
in practice highly interdependent ,  they represent  
logically independent concepts. 

The emphasis in this paper  is on the second kind of 
attribute,  i.e. on the specification of the operations 
associated with classes of data objects. At most points 
in a program one is concerned solely with the behav- 

ioral characteristics of a data object.  One is interested 
in what one can do with it, not in how the various 
operations on it are implemented.  The analogy with a 
closed procedure is exact. More often than not, one 
need be no more concerned with the underlying repre- 
sentation of the object being operated on than one 
is with the algorithm used to implement  an invoked 
procedure.  

If at a given level of ref inement  one is interested 
only in the behavioral  characteristics of certain data 
objects,  then any a t tempt  to abstract data must be 
based upon those characteristics, and only those char- 
acteristics. The introduction of other attributes, e.g. a 
representat ion,  can only serve to cloud the relevant 
issues. We use the term "abstract  data type"  to refer to 
a class of objects defined by a representat ion-independ- 
ent specification. 

The class construct of S I M U L A  67 [3] has been 
used as the starting point for much of the more  recent 
work on embedding abstract types in programming 
languages, e.g. [14, 16, 18]. While each of these offers 
a mechanism for binding together  the operat ions and 
storage structures representing a type, they offer no 
representat ion-independent  means for specifying the 
behavior  of the operations.  The only representation- 
independent  information that one can supply are the 
domains and ranges of the various operations.  One 
could, for example,  define a type Queue (of I tems) 
with the operations 

NEW: ~ Queue 
ADD: Queue × Item ~ Queue 
FRONT: Queue ~ Item 
REMOVE: Queue ~ Queue 
IS_.EMPTY?: Queue ~ Boolean 

Unfortunately,  however,  short of supplying a represen- 
tation, the only mechanism for denoting what these 
operations " m e a n "  is a judicious choice of names.  
Except  for intuitions about  the meaning of such words 
as Queue and F R O N T ,  the operations might just as 
easily be defining type Stack as type Queue.  The do- 
main and range specifications for these two types are 
isomorphic. To rely on one 's  intuition about  the mean- 
ing of names can be dangerous even when dealing with 
familiar types [19]. When dealing with unfamiliar types 
it is almost impossible. What is needed,  therefore,  is a 
mechanism for specifying the semantics of the opera- 
tions of the type. 

There are, of course, many possible approaches to 
the specification of the semantics of an abstract data 
type. Most,  however,  can be placed in one of two 
categories: operational or definitional. In an opera- 
tional specification, instead of trying to describe the 
properties of the abstract data type, one gives a recipe 
for constructing it. One begins with some well-under- 
stood language or discipline and builds a model for the 
type in terms of that discipline. Wulf [24], for example,  
makes good use of sequences in modeling various data 
structures. 
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The operational approach to formal specification 
has many advantages. Most significantly, operational 
specifications seem to be relatively (compared to defi- 
nitional specifications) easily constructed by those 
trained as p r o g r a m m e r s - c h i e f l y  because the construc- 
tion of operational specifications so closely resembles 
programming.  As the operations to be specified grow 
complex,  however,  operat ional  specifications tend to 
get too long (see, for example ,  Batey [1]) to permit  
substantial confidence in their aptness. As the number  
of operat ions grows, problems arise because the rela- 
tions among the operat ions are not explicitly stated, 
and inferring them becomes combinatorially harder.  

The most serious problem associated with opera- 
tional specifications is that they almost always force one 
to overspecify the abstraction. By introducing extra- 
neous detail, they associate nonessential attributes with 
the type. This extraneous detail complicates the prob- 
lem of proving the correctness of an implementat ion by 
introducing conditions that are irrelevant,  yet never- 
theless must be verified. More importantly,  the intro- 
duction of extraneous detail places unnecessary con- 
straints on the choice of an implementat ion and may 
potentially eliminate the best solutions to the problem.  

Axiomatic definitions avoid this problem.  The alge- 
braic approach used here owes much to the work of 
Hoare  [13] (which in turn owes much to Floyd [5]) and 
is closely related to Standish's "axiomatic specifica- 
t ions" [22] and Zilles' "algebraic specifications" [25]. 
Its formal basis stems from the heterogeneous algebras 
of Birkhoff and Lipson [2]. An algebraic specification 
of an abstract type consists of two pairs: a syntactic 
specification and a set of relations. The syntactic speci- 
fication provides the syntactic information that many 
programming languages already require: the names,  
domains,  and ranges of the operations associated with 
the type. The set of relations defines the meanings of 
the operations by stating their relationships to one 
another.  

3. A Short Exampl e  

Consider type Queue (of I tems) with the operat ions 
listed in the previous section. The syntactic specifica- 
tion is as above: 

NEW: --~ Queue 
ADD: Queue x Item --~ Queue 
FRONT: Queue --~ Item 
REMOVE: Queue --~ Queue 
IS. EMPTY?: Queue -~Boolean 

The distinguishing characteristic of a queue is that it is a 
first in-first out storage device. A good axiomatic defi- 
nition of the above operat ions must therefore assert 
that and only that characteristic. The relations (or ax- 
ioms) below comprise just such a definition. The mean- 
ings of the axioms should be relatively clear. ( " = "  has 
its standard meaning, "q"  and " i"  are typed free varia- 
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bles, and "e r ro r"  is a distinguished value 'with the 
property that the value of any operat ion applied to an 
argument  list containing error  is error ,  e.g. f , , ( x l ,  • • • , 

x, , ' e r ror ,  x,+2, • • • , Xn) = error.)  

(1) IS_EMPTY? (NEW) = true 
(2) IS_EMPTY? (ADD(q,i)) = false 
(3) FRONT(NEW) = error 
(4) FRONT (ADD(q,i)) = if IS_EMPTY? (q) 

then i 
else FRONT(q) 

(5) REMOVE(NEW) = error 
(6) REMOVE (ADD(q,i)) = if IS_EMPTY? (q) 

then NEW 
else ADD(REMOVE(q),i) 

Note that this set of axioms involves no assumption 
about the attributes of type I tem.  In effect I tem is a 
paramete r  of type Type,  and the specification may be 
viewed as defining a type schema rather  than a single 
type. This will be the case for many algebraic type 
specifications. 

With some practice, one can become quite adept  at 
reading algebraic axiomatizations. Practice also makes  
it easier to construct such specifications; see Gut tag 
[11]. Unfortunately,  it does not make it trivial. It is not 
always immediately clear how to attack the problem.  
Nor,  once one has constructed an axiomatization,  is it 
always easy to ascertain whether  or not the axiomatiza- 
tion is consistent and sufficiently complete.  The mean- 
ing of the operations is supplied by a set of individual 
statements of fact. If  any two of these are contradic- 
tory,  the axiomatization is inconsistent. If  the combina- 
tion of statements is not sufficient to convey all of the 
vital information regarding the meaning of the opera-  
tions of the type, the axiomatization is not sufficiently 
complete.1 

Experience indicates that completeness is, in a 
practical sense, a more  severe problem than consist- 
ency. If one has an intuitive understanding of the type 
being specified, one is unlikely to supply contradictory 
axioms. It  is, on the o the r  hand, extremely easy to 
overlook one or more cases. Boundary conditions, e.g. 
R E M O V E ( N E W ) ,  are particularly likely to be over- 
looked.  

In an a t tempt  to ameliorate this problem,  we have 
devised heuristics to aid the user in the initial presenta- 
tion of an axiomatic specification of the operat ions of 
an abstract type and a system to mechanically "ver i fy"  
the sufficient-completeness of that specification. As the 
first step in defining a new type, the user would supply 
the system with the syntactic specification of the type 
and an axiomatization constructed with the aid of the 
heuristics ment ioned above.  Given this preliminary 
specification, the system would begin to p rompt  the 
user to supply the additional information necessary for 
the system to derive a sufficiently complete axiom set 

1 Sufficiently complete is a technical notion first developed in 
Guttag [8]. It differs considerably from both the notion of complete- 
ness commonly used in logic and that used in Zilles [25]. 

Communications June 1977 
of Volume 20 
the ACM Number 6 



for the operations. A detailed look at sufficient-com- 
pleteness is contained in Guttag [8, 9]. 

4. An Extended Example 

A common data structuring problem is the design of 
the symbol table component  of a compiler for a block 
structured language. Many sources contain good dis- 
cussions of various symbol table organizations. Setting 
aside variations in form, the basic operations described 
vary little from source to source. They are: 

INIT: Allocate and initialize the symbol table. 
E N T E R B L O C K :  Prepare a new local naming scope. 
L E A V E B L O C K :  Discard entries from the most  recent scope en- 

tered, and reestablish the next outer  scope. 
IS_INBLOCK?:  Has a specified identifier already been declared 

in this scope? (Used to avoid duplicate declara- 
t ions.) 

A D D :  Add an identifier and its attributes to the symbol 
table. 

R E T R I E V E :  Return the attr ibutes associated (in the most 
local scope in which it occurs) with a specified 
identifier. 

Though many references provide insights into how 
these operations can be implemented, none presents a 
formal definition (other than implementations) of ex- 
actly what they mean. The abstract concept "symbol 
table" thus goes undefined. Those who attempt to write 
compilers in a top-down fashion suffer from a similar 
problem. Early refinements of parts of the compiler 
make use of the basic symbol table operations, but the 
"meaning" of these operations is provided only by 
subsequent levels of refinement.  This is infelicitous in 
that the clear separation of levels of abstraction is lost 
and with it many of the advantages of top-down design. 
By providing axiomatic semantics for the operations, 
this problem can be avoided. 

The thought of providing rigorous definitions for so 
many operations may, at first, seem a bit intimidating. 
Nevertheless, if one is to understand the refinement,  
one must know what each operation means. The fol- 
lowing specification of abstract type Symboltable sup- 
plies these meanings. 

Type: Symboltable 

Operations : 
INIT: 
E N T E R B L O C K :  
L E A V E B L O C K :  
A D D :  

I S J N B L O C K ? :  
R E T R I E V E :  

Axioms: 

Symboltable 
Symboltable ~ Symboltable 
Symboltable --~ Symboltable 
Symboltable x Identifier x Attributelist  

Symboltable 
Symboltable x Identifier --~ Boolean 
Symboltable x Identifier --~ Attributelist  

(1) L E A V E B L O C K ( I N I T )  = error 
(2) L E A V E B L O C K ( E N T E R B L O C K ( s y m t a b ) )  = symtab 
(3) L E A V E B L O C K ( A D D ( s y m t a b ,  id, attrs)) = L E A V E -  

BLOCK(symtab)  
(4) IS_.INBLOCK? (INIT, id) = false 
(5) IS_JNBLOCK? ( E N T E R B L O C K ( s y m t a b ) ,  id) = false 
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(6) I S J N B L O C K ?  (ADD(symtab ,  id, attrs),  idl) = 
if IS_SAME? (id, idl) z 

then true 
else I S J N B L O C K ?  (symtab,  id) 

(7) R E T R I E V E ( I N I T ,  id) = error 

(8) R E T R I E V E ( E N T E R B L O C K ( s y m t a b ) ,  id) = 
RETRIEVE(syrn tab ,  id) 

(9) R E T R I E V E ( A D D ( s y m t a b ,  id, attrs),  idl)= 
i f  IS_SAME? (id, idl) 

then attrs 
else R E T R I E V E ( s y m t a b ,  idl) 

This set of relations serves a dual purpose. Not only 
does it define an abstract type that can be used in the 
specification of various parts of the compiler, but it also 
provides a complete self-contained specification for a 
major subsystem of the compiler. If one wished to 
delegate the design and implementation of the symbol 
table subsystem, the algebraic characterization of the 
abstract type would (unlike the informal description in, 
say, McKeeman [15]) be a sufficient specification of 
the problem. In fact, the procedure discussed earlier 
can be used to formally prove the sufficient-complete- 
ness of this specification. 

The next step in the design process is to further 
refine type Symboltable, i.e. to provide implementa- 
tions of the operations of the type. These implementa- 
tions will implicitly furnish representation for values of 
type Symboltable. 

A representation of a type T consists of (i) any 
interpretation (implementation) of the operations of 
the type that is a model for the axioms of the specifica- 
tion of T, and (it) a function • that maps terms in the 
model domain onto their representatives in the abstract 
domain. (This is basically the abstraction function of 
Hoare [12].) 

It is important to note that dO may not have a proper  
inverse. Consider, for example, type Bounded Queue 
(with a maximum length of three).  A reasonable repre- 
sentation of the values of this type might be based on a 
ring-buffer and top pointer. Given this representation, 
the program segment: 

x := E M P T Y . Q  
x := A D D . Q ( x ,  A) 
x := A D D . Q ( x ,  B) 
x := A D D . Q ( x ,  C) 
x := R E M O V E . Q ( x )  
x := A D D . Q ( x ,  D) 

would translate to a representation forx  of the form: 

Top Pointer 

2 The definition of IS_SAME? is part of the specification of an 
independently defined type Identifier.  
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Similar ly :  

x := EMPTY.Q 
x := ADD.Q(x, B) 
x := ADD.Q(x, C) 
x := ADD.Q(x, D) 

would  yie ld  a r e p r e s e n t a t i o n  for  x of  the  form:  

Top Pointer 

It  is c lear  that  these  two r e p r e s e n t a t i o n s  t hough  not  
iden t ica l ,  r e fe r  to the  same  abs t rac t  va lue .  Tha t  is to 
say,  the  m a p p i n g  f rom values  to r e p r e s e n t a t i o n s ,  ~ - 1 ,  
may  be  o n e - t o - m a n y .  

The  r e p r e s e n t a t i o n  of  type  S y m b o l t a b l e  will m a k e  
use of  the  abs t rac t  da t a  types  Stack (of  a r rays)  and  
A r r a y  (of  a t t r ibu te l i s t s )  as de f ined  be low.  

Type: Stack 

Operations: 

NEWSTACK: ~ Stack 
PUSH: Stack x Array ~ Stack 
POP: Stack ~ Stack 
TOP: Stack --~ Array 
IS_NEWSTACK?: Stack --~Boolean 
REPLACE: Stack x Array ~ Stack 

Axioms: 

(10) IS_NEWSTACK? (NEWSTACK) = true 
(11) IS_NEWSTACK? (PUSH(stk, arr)) = false 
(12) POP(NEWSTACK) = error 
(13) POP(PUSH(stk, arr)) = stk 
(14) TOP(NEWSTACK) = error 
(15) TOP(PUSH(stk, arr)) = arr 
(16) REPLACE(stk, arr) = if IS~EWSTACK? (stk) 

Type: Array 

Operations: 

EMPTY: 
ASSIGN: 
READ: 
IS_UNDEFINED?: 

Axioms: 

then error 
else PUSH(POP(stk), arr) 

Array 
Array x Identifier × Attributelist ~ Array 
Array x Identifier --~ Attributelist 
Array x Identifier ~Boolean 

(17) IS_UNDEFINED? (EMPTY, id) = true 
(18) IS_UNDEFINED? (ASSIGN(arr, id, attrs), idl) = 

if IS_SAME? (id, idl) 
then false 
else IS_UNDEFINED? (arr, idl) 

(19) READ(EMPTY, id) = error 
(20) READ(ASSIGN(arr, id, attrs), idl) = if IS_SAME? (id, idl) 

then attrs 
else READ(arr, idl) 

The  genera l  s cheme  of  the  r e p r e s e n t a t i o n  of  type  
S y m b o l t a b l e  is to t rea t  a va lue  of  the  type  as a s tack of  
a r rays  (with index  type  Iden t i f i e r ) ,  where  each  a r r ay  
conta ins  the  a t t r ibu tes  for  the  ident i f ie rs  d e c l a r e d  in a 
single b lock .  F o r  eve ry  func t ion  f in the  m o r e  abs t rac t  
d o m a i n  (e .g.  type  S y m b o l t a b l e ) ,  a f u n c t i o n f '  is de f ined  
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in the  lower - leve l  d o m a i n ;  thus  we have:  

INIT': --~ Stack 
ENTERBLOCK': Stack--~ Stack 
LEAVEBLOCK': Stack ~ Stack 
ADD': Stack x Identifier x Attributelist ~ Stack 
IS_INBLOCK?': Stack x Identifier --* Boolean 
RETRIEVE': Stack x Identifier --+ Anributelist 

The  " c o d e "  for  each  of  these  funct ions  is ( " : : "  m e a n s  
"is  de f ined  as" ) :  

INIT' :: PUSH(NEWSTACK, EMPTY) 
ENTERBLOCK'(stk) :: PUSH(stk, EMPTY) 
LEAVEBLOCK'(stk) :: if IS_NEWSTACK? (POP(stk)) 

then error 
else POP(stk) 

ADD'(stk, id, attrs) :: REPLACE(stk, ASSIGN(TOP(stk), id, 
attrs)) 

ISJNBLOCK?'(stk, id) :: if IS_.NEWSTACK? (stk) 
then false 
else -7 IS_UNDEFINED? (TOP(stk), 

id) 
RETRIEVE'(stk, id) :: if IS_NEWSTACK? (stk) 

then error 
else -1 IS_UNDEFINED? (TOP(stk),id) 

then RETRIEVE'(POP(stk), id) 
else READ(TOP(stk), id) 

The  i n t e r p r e t a t i o n  func t ion  qb is de f ined  by:  
(a) qb(error) = error 
(b) qb(NEWSTACK) = error 
(c) qb(PUSH(stk, EMPTY)) = if IS_NEWSTACK? (stk) 

then INIT 
else ENTERBLOCK(qb(stk)) 

(d) ~(PUSH(stk, ASSIGN(arr, id, attrs))) = ADD(qbPUSH(stk, 
arr)), id, attrs)) 

Be fo re  con t inu ing  to re f ine  these  o p e r a t i o n s ,  i .e .  
be fo re  supply ing  r e p r e s e n t a t i o n s  for  types  A r r a y  and  
S tack ,  let  us cons ide r  the  p r o b l e m  of  p rov ing  tha t  the  
above  i m p l e m e n t a t i o n  of  type  S y m b o l t a b l e  is cor rec t .  

In  the  course  of  such a p r o o f  two k inds  of  invar ian t s  
may  have  to be  ver i f ied :  i nhe ren t  invar ian t s  and  r ep re -  
s en t a t i on  invar ian ts .  The  i nhe ren t  invar ian t s  r e p r e s e n t  
those  invar ian t  r e l a t ionsh ips  tha t  mus t  be  m a i n t a i n e d  
by any r e p r e s e n t a t i o n  of  the  type .  T h e y  c o r r e s p o n d  to 
the  ax ioms  used in the  spec i f ica t ion  of  the  type .  A 
r e p r e s e n t a t i o n  inva r i an t ,  on the  o t h e r  hand ,  is pecu l i a r  
to a pa r t i cu l a r  r e p r e s e n t a t i o n  of  a type .  

The  bas ic  p r o c e d u r e  fo l lowed  in ver i fy ing  the  inher-  
en t  invar ian ts  is to t ake  each  ax iom for  type  S y m b o l t a -  
ble  and  rep lace  all ins tances  of  each  func t ion  a p p e a r i n g  
in the  ax ioma t i za t i on  with its i n t e r p r e t a t i o n .  T h e n ,  by  
using the  ax ioma t i za t ions  of  the  o p e r a t i o n s  used  in 
cons t ruc t ing  the r e p r e s e n t a t i o n s ,  it is shown tha t  the  
l e f t -hand  side of  each  ax iom is equ iva l en t  to the  r ight-  
hand  side of  that  ax iom.  Tha t  is to say,  t hey  r e p r e s e n t  
the  same  abs t rac t  va lue .  

W h a t  must  be  shown t h e r e f o r e  is tha t  for  eve ry  
r e l a t i o n f ' ( x * )  = z ( w h e r e x *  is a list ,  poss ib ly  e m p t y ,  of  
a r g u m e n t s ) ,  de r ived  f rom the  ax ioma t i za t i on  of  type  
S y m b o l t a b l e ,  
(a) if the  r ange  of  f is the  type  be ing  de f ined  ( i .e . ,  

S y m b o l t a b l e ) ,  d~(f'(x*)) = qb(z) for  all legal  assign-  
men t s  to the  f ree  va r i ab le s  of  x* and  z,  or  

Communications June 1977 
of Volume 20 
the ACM Number 6 



(b) if the range of f is a type other than that being 
defined, f ' ( x * )  = z for all legal assignments to the 
free variables of x* and z. 

To show this, we have at our disposal a proof system 
consisting of the axioms and rules of inference of our 
programming language plus the axioms defining the 
abstract types used in the representation. 

The proof depends upon the assumption that ob- 
jects of type Symboltable are created and manipulated 
only via the operations defined in the specification of 
that type. (The use of classes as described in Palme [18] 
makes this assumption relatively easy to verify.) All 
that need be shown is that INIT'  establishes the invar- 
iants and that if on entry to an operation all invariants 
hold for all objects of type Symboltable to be manipu- 
lated by that operation, then all invariants on those 
objects hold upon completion of that operation. More 
complete discussions of how this may be done are 
contained in Guttag [8], Spitzen [21], and Wegbreit 
[23] (where it is called generator induction). 

To verify that the implementation is consistent with 
Axioms 1 through 8 is quite straightforward. (It has, in 
fact, been done completely mechanically by David 
Musser [17] using the program verification system at 
the University of Southern California Information Sci- 
ences Institute [7]. Thus the proofs will not be pre- 
sented here. Axiom 9, on the other hand, presents 
some problems that make the portion of the proof 
pertinent to that axiom worth examining. 

The proof that the implementation satisfies Axiom 
9 is based upon an assumption about the environment 
in which the operations of the type are to be used. In 
effect, the assumption asserts that an identifier is never 
added to an empty symbol table, i.e. a scope must have 
been established (on a more concrete level, an array 
must have been pushed onto the stack) before an iden- 
tifier can be added. The concrete manifestation of this 
assumption is formally expressed: 

A s s u m p t i o n  1. For any term, ADD'(symtab ,  id, 
attrs), IS_NEWSTACK? (symtab) = false. 

The validity of the above assumption can be assured 
by adding to the implementation of A D D '  a check for 
this condition and having it execute an ENTER-  
BLOCK'  if necessary. This would make it possible to 
construct a completely self-contained proof of the cor- 
rectness of the representation. In most cases, however, 
it would also introduce needless inefficiency. The com- 
piler must somewhere check for mismatched (i.e. ex- 
tra) " end"  statements. Any check in A D D '  would 
therefore be redundant.  

This observation leads to a notion of conditional 
correctness, i.e. the representation of the abstract type 
is correct if the enclosing program obeys certain con- 
straints. In practice, this is often an extremely useful 
notion of correctness, especially if the constraint is 
easily checked. If, on the other hand, the environment 
in which the abstract type is to be used is unknown (e.g. 
if the type is to be includedin a library), this is probably 
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unacceptably dangerous. Given the above assumption, 
the verification of Axiom 9 is straightforward but 
lengthy and will therefore not be presented here. It 
does appear in Guttag [8]. 

Now we know that, given implementations of types 
Stack and Array that are consistent with their specifica- 
tions, the implementation of type Symboltable is "cor- 
rect ."  Assuming PL/I-like based variables, pointers, 
and structures, the implementation of type Stack is 
trivial. The basic scheme is to represent a stack as a 
pointer to a list of structures of the form: 

1. stack elem based, 
2. val Array, 
2. prev pointer. 

The operations may be implemented as follows (PL/I 
keywords have been boldfaced): 

NEWSTACK'  :: null 

PUSH'(symtab,  newblock) :: 
procedure(symtab: pointer, newblock: Array)returns(pointer) 

declare elem_ptr pointer 
allocate(stack_elem) set(elem_ptr) 
elem_ptr ---> prev := symtab 
elem_ptr ---> val := newblock 
return(elem_ptr) 

end 
POP'(symtab) :: 

proeedure(symtab: pointer) returns(pointer) 
if symtab = null 

then return(error) 
else return(symtab ---> prey) 

end 
TOP'(symtab) :: 

procedure(symtab: pointer) returns(Array) 
if symtab = null 

then return(error) 
else return(symtab ---> val) 

end 
IS~,IEWSTACK?'(symtab)  :: symtab = null 

REPLACE'(symtab,  newblock) :: 
procedure(symtab: pointer, newblock: Array) returns(pointer) 

if symtab = null 
then return(error) 
else symtab --~ val := newblock 

return(symtab) 
end 

dp is defined by the mapping: 

qb(symtab) :: if symtab = null 
then NEWSTACK 
else PUSH(dP(symtab ~ prev), symtab --> val)) 

The implementation chosen for type Array is a bit 
more complicated. The basic scheme is to represent an 
array as a PL/I-like array, hash_tab, of n pointers to 
lists of structures of the form: 

1. entry based, 
2. id Identifier 
2. attributes Attributelist, 
2. next pointer. 

The correct element of hash_tab is selected by perform- 
ing a hash on values of type Identifier. Therefore ,  in 
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add i t ion  to the  ope ra t i ons  used  in the  code  above ,  the  
i m p l e m e n t a t i o n  of  type  A r r a y  uses an o p e r a t i o n  

HASH:Identifier --* {1, 2 . . . . .  n} 

which is a s sumed  to be  de f ined  in the  type  Iden t i f i e r  
speci f ica t ion .  The  " c o d e "  i m p l e m e n t i n g  type  A r r a y  is: 

declare hash_tab(n) pointer based 

EMPTY' :: 
procedure returns(pointer) 

declare new_hash_tab pointer 
allocate (hash_tab) set (newdaash_tab) 
do i := 1 to n 

new.ash_tab ~ hash_tab(i) := null 
end 
return(new_hash_tab) 

end 
ASSIGN'(arr, indx, atr) :: 

procedure(am pointer, indx: Identifier, atr: Attributelist) 
returns(pointer) 

declare new_entry pointer 
allocate(entry) set (new_entry) 

new_entry ~ id := indx 
new_entry --* attributes := atr 
new_entry ~ next := arr ~ hash_tab(HASH(indx)) 
arr ~ hash_tab(HASH(indx)) := new_entry 

return(arr) 
end 

READ'(arr, indx) :: 
procedure(am pointer, indx: Identifier) returns(Attributelist) 

declare bucket_ptr pointer 
bucket_ptr := arr --* hash_tab(HASH(indx)) 

do while(bucket_ptr 4; null & ~ IS_SAME?(bucket_ptr -~ id, 
indx)) 

bucket_ptr := bucket_ptr --* next 
end 
if bucket_ptr = null 

then return(error) 
else return (bucket_ptr ~ attributes) 

end 
IS_UNDEFINED?'(arr, indx) :: 

procedure(am pointer, indx: Identifier) returns(Boolean) 
declare bucket_ptr pointer 

bucket_ptr := arr--~ hash_tab(HASH(indx)) 
do while (bucket_ptr :k null & ~ IS_SAME? (bucket_ptr --~ id, 

indx)) 
bucket_ptr := bucket_ptr --~ next 

end 
return (bucket_ptr = null) 

end 

A s  one  might  expec t ,  qb is a bit  m o r e  c o m p l e x  for  
this r e p r e s e n t a t i o n .  I t  is de f ined  by using two in t e rme-  
d ia te  funct ions :  qbl to cons t ruc t  a union  ove r  all the  
en t r ies  in the  hash  t ab le ,  and  ~ 2  to cons t ruc t  a union  
over  the  e l e m e n t s  of  an ind iv idua l  bucke t .  
(a) a~(hash_tab_ptr) = ~l(hash_tab_ptr, EMPTY, 1) 
(b) a~l(hash_tab_ptr, arr, i) = 

if i >  n 
then arr 
else ~bl (hash_tab_ptr, q~2(hash_tab_ptr ~ hash_tab(i), arr), 

i + l )  
(c) qb2(bucket_ptr,arr)= 

if bucket_ptr = null 
then arr 
else ASSIGN(qb2(bucket_ptr --~ next, arr), bucket_ptr --~ id, 

bucket_ptr --~ attributes) 
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The  des ign of  the symbo l  table  subsys tem of  the  
compi l e r  is now essent ia l ly  c o m p l e t e .  G iven  i m p l e m e n -  
ta t ions  of  types  Iden t i f i e r  and  A t t r i bu t e l i s t  and  some  
obvious  syntact ic  t r a n s f o r m a t i o n s ,  the  a b o v e  code  
could  be  c o m p i l e d  by  a PL/ I  compi l e r .  Be fo re  do ing  so,  
h o w e v e r ,  it wou ld  be wise to p rove  tha t  the  i m p l e m e n -  
ta t ions  of  types  Stack and A r r a y  are  cons i s ten t  with the  
spec i f ica t ions  of  those  types .  Whi le  such a p r o o f  would  
involve  subs tan t ia l  issues r e l a t e d  to the  gene ra l  p ro-  
g ram ver i f ica t ion  p r o b l e m  (e.g.  vis ~ vis the  in tegr i ty  of  
the  po in t e r s  and  the  ques t ion  of  mod i fy ing  sha red  da t a  
s t ruc tu res ) ,  it wou ld  not  shed  fu r the r  l ight  on the  ro le  
of  abs t rac t  da t a  types  in p r o g r a m  ver i f ica t ion  and  is not  
p r e s e n t e d  in these  pages .  

The  ease  with which a lgeb ra i c  spec i f ica t ions  can be  
a d a p t e d  for  d i f fe ren t  app l i ca t ions  is one  of  the  m a j o r  
s t reng ths  of  the  t echn ique .  Because  the  r e l a t i onsh ips  
a m o n g  the var ious  o p e r a t i o n s  a p p e a r  expl ic i t ly ,  the  
process  of  dec id ing  which ax ioms  mus t  be  a l t e r ed  to 
effect  a change  is s t r a igh t fo rward .  Le t  us cons ide r  a 
r a the r  subs tan t i a l  change  in the  l anguage  to be  com-  
p i led .  A s s u m e  that  the  l anguage  pe rmi t s  the  inher i t -  
ance of  g loba l  va r i ab les  only  if they  a p p e a r  in a " k n o w s  
l i s t , "  which lists, at b lock  en t ry ,  all non loca l  va r i ab les  
to be used  within the  b lock  [6]. The  s y m b o l  t ab le  
o p e r a t i o n s  in a compi l e r  for  such a l anguage  wou ld  be  
much  l ike those  a l r e a dy  d iscussed .  The  only  d i f fe rence  
vis ible  to par t s  of  the  c o m p i l e r  o t h e r  than  the s y m b o l  
tab le  m o d u l e  would  be in the  E N T E R B L O C K  o p e r a -  
t ion:  I t  wou ld  have to be  a l t e r e d  to inc lude  an a r g u m e n t  
of  abs t rac t  type  Knowl i s t .  Wi th in  the  spec i f ica t ion  of  
type  S y m b o l t a b l e ,  all r e l a t ions ,  ~nd  only  those  re la-  
t ions ,  tha t  expl ic i t ly  dea l  with the  E N T E R B L O C K  
o p e r a t i o n  would  have  to be a l t e r ed .  A n  a p p r o p r i a t e  set 
of  ax ioms  would  be :  

ISANBLOCK?(ENTERBLOCK(symtab, klist), id) = false 
LEAVEBLOCK(ENTERBLOCK(symtab, klist)) = symtab 
RETRIEVE(ENTERBLOCK(symtab, klist), id) = 

if IS_IN?(klist, id) 
then RETRIEVE(symtab, id) 
else error 

No te  tha t  the  a b o v e  re la t ions  are  not  well  de f ined .  
The  u n d e f i n e d  symbo l  I S _ I N ? ,  an o p e r a t i o n  of  the  
abs t rac t  t ype  Knowl i s t ,  a p p e a r s  in the  th i rd  ax iom.  The  
so lu t ion  to this p r o b l e m  is s imply  to add  a n o t h e r  level  
to the  spec i f ica t ion  by supp ly ing  an a lgebra i c  specif ica-  
t ion of  the  abs t rac t  type  Knowl i s t .  A n  a p p r o p r i a t e  set 
of  o p e r a t i o n s  might  be :  

CREATE: --~ Knowlist 
APPEND: Knowlist × Identifier--~ Knowlist 
ISAN?: Knowlist x Identifier--~ Boolean 

These  o p e r a t i o n s  cou ld  then  be  prec ise ly  de f ined  by  the  
fo l lowing axioms:  

IS_IN?(CREATE) = false 
ISAN?(APPEND(klist, id), idl) = if IS_SAME?(id, idl) 

then true 
else IS_IN?(klist, idl) 
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The implementat ion of abstract type Knowlist is 
trivial. The changes necessary to adapt  the previously 
presented implementat ion of abstract type Symboltable 
would be more substantial. The kind of changes neces- 
sary can, however,  be inferred from the changes made 
to the axiomatization. 

5.  Conclus ions  

We have not yet applied the techniques discussed in 
this paper  to realistically large software projects.  
Nevertheless,  there is reason to believe that the tech- 
niques demonstrated will "scale up ."  The size and 
complexity of a specification at any level of abstraction 
are essentially independent  of both the size and com- 
plexity of the system being described and of the amount  
of mechanism ultimately used in the implementat ion.  
The independence springs in large measure from the 
ability to separate the precise meaning of a complex 
abstract data type from the details involved in its imple- 
mentation. It is the ability to be precise without being 
detailed that encourages the belief that the approach 
outlined here can be applied even to "very large" 
systems can and perhaps reduce systems that were 
formerly "very large" (i.e. incomprehensible)  to more 
manageable proportions.  

Abstract  types may thus play a vital role in the 
formulation and presentation of precise specifications 
for software. Many complex systems can be viewed as 
instances of an abstract type. A database management  
system, for example,  might be completely character- 
ized by an algebraic specification of the various opera- 
tions available to users. For those systems that are not 
easily totally characterized in terms of algebraic rela- 
tions, the use of algebraic type specifications to abstract 
various complex subsystems may still make  a substan- 
tial contribution to the design process. The process of 
functional decomposit ion requires some means for 
specifying the communication among the various func- 
t i o n s -  data often fulfills this need. The use of algebraic 
specifications to provide abstract definitions of the op- 
erations used to establish communicat ion among the 
various functions may thus play a significant role in 
simplifying the process of functional abstraction. 

The extensive use of algebraic specifications of ab- 
stract types may also lead to better-designed data struc- 
tures. The premature  choice of a storage structure and 
set of access routines is a common cause of inefficien- 
cies in software. Because they serve as the main means 
of communication among the various components  of 
many systems, the data structures are often the first 
components  designed. Unfortunately,  the information 
required to make an intelligent choice among the var- 
ious options is often not available at this stage of the 
design process. The designer may,  for example,  have 
poor  insight into the relative frequency of the various 
operations to be per formed on a data structure. By 
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providing a representat ion-f lee,  yet precise, descrip- 
tion of the operations on a data structure, algebraic 
type definitions enable the designer to delay the mo- 
ment  at which a storage structure must be designed and 
frozen. 

The second area in which we expect the algebraic 
specification of abstract types to have a substantial 
impact is on proofs of program properties.  For verifica- 
tions of programs that use abstract types, the algebraic 
specification of the types used provides a set of power- 
ful rules of inference that can be used to demonstra te  
the consistency of the program and its specification. 
That  is to say, the presence of axiomatic definitions of 
the abstract types provides a mechanism for proving a 
program to be consistent with its specifications, pro- 
vided that the implementat ions of the abstract opera- 
tions that it uses are consistent with their specifications. 
Thus a technique for factoring the proof  is provided,  
for the algebraic type definitions serve as the specifica- 
tion of intent at a lower level of abstraction. For proofs 
of the correctness of representat ions of abstract types, 
the algebraic specification provides exactly those asser- 
tions that must be verified. The value of having such a 
set of assertions available should be apparent  to any 
one who has a t tempted to construct,  a poster ior i ,  asser- 
tions appropriate  to a correctness proof  for a program.  
A detailed discussion of the use of algebraic specifica- 
tions in a semiautomatic program verification system is 
contained in Guttag [10]. 

Given suitable restrictions on the form that axioma- 
tizations may take,  a system in which implementat ions 
and algebraic specifications of abstract types are inter- 
changeable can be constructed. In the absence of an 
implementat ion,  the operations of the algebra may be 
interpreted symbolically. Thus,  except for a significant 
loss in efficiency, the lack of an implementat ion can be 
made completely t ransparent  to the user. Such a system 
should prove valuable as a vehicle for facilitating the 
testing of software. 

The ability to use specifications for testing is closely 
related to the policy of restricted information flow 
advocated in Parnas [20]. If  a p rogrammer  is supplied 
with algebraic definitions of the abstract operations 
available to him and forced to write and test his module 
with only that information available to him, he is de- 
nied the opportunity to rely intentionally or acciden- 
tally upon information that should not be relied upon. 
This not only serves to localize the effect of implemen- 
tation errors, but also to increase the ease with which 
one implementat ion may be replaced by another.  This 
should, in general, serve to limit the danger of choosing 
a poor  representat ion and becoming inextricably 
locked into it. 

Before ending this paper ,  it seems fitting to mention 
some of the failings and problems associated with the 
work described. The specification technique presented 
here requires that all operations be specified as func- 
tions, i.e. as mappings from a cross product of values to 
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a single value. Most programs, on the other hand, are 
laden with procedures that return several values (via 
parameters) or no value at all. (The latter kind of 
procedure is invoked purely for its side effects.) The 
inability to specify such procedures is a serious prob- 
lem, but one that we believe can be solved with only 
minor changes to the specification techniques [10]. 

The value of abstraction in general and abstraction 
of data types in particular has been stressed throughout 
this paper. Nevertheless, the process is not without its 
dangers. It is all too easy to create abstractions that 
ignore crucial distinctions or attributes. The specifica- 
tion technique presented here,  for example, provides 
no mechanism for specifying performance constraints 
and thus encourages one to ignore distinctions based on 
such criteria. In some environments,  such considera- 
tions are crucial, and to abstract them out can be 
disastrous. 

Another  problem with algebraic specifications is 
that they supply little direction to implementors. Only 
experience will tell how easy it is to go from an alge- 
braic specification to an implementation. It is clear, 
however, that the transition is less easy than from an 
operational specification. 

Our most important reservation pertains to the ease 
with which algebraic specifications can be constructed 
and read. They should present no problem to those 
with formal training in computer  science. At present,  
however,  most people involved in the production of 
software have no such training. The extent to which the 
techniques described in this paper are generally appli- 
cable is thus somewhat open to conjecture.  
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