Now Playing: Melody Day
Caribou
from Andorra
Released August 21, 2007

Movie:
Knick Knack
Pixar, 1989

Ray Casting

Rick Skarbez, Instructor
COMP 575
October 25, 2007

Announcements

• Programming Assignment 2 (3D graphics in OpenGL) is due TONIGHT by 11:59pm
• Programming Assignment 3 (Rasterization) is out
 • Due NEXT Saturday, November 3 by 11:59pm
 • If you do hand in by Thursday midnight, +10 bonus points

Last Time

• Reviewed light transport
• Lights
• Materials
• Cameras
• Talked about some features of real cameras
• Lens effects
• Film

Today

• Doing the math to cast rays
Ray-Tracing Algorithm

- For each pixel / subpixel
 - Shoot a ray into the scene
 - Find nearest object the ray intersects
 - If surface is (nonreflecting OR light)
 - Color the pixel
 - Else
 - Calculate new ray direction
 - Recurse

Ray-Casting

- This is what we're going to discuss today
- As we saw on the last slide, ray casting is part of ray tracing
- Can also be used on its own
 - Basically gives you OpenGL-like results
 - No reflection/refraction

Generating an Image

1. Generate the rays from the eye
 - One (or more) for each pixel
2. Figure out if those rays “see” anything
 - Compute ray-object intersections
3. Determine the color seen by the ray
 - Compute object-light interactions

Rays

- Recall that a ray is just a vector with a starting point
 - Ray = (Point, Vector)

- Let a ray be defined by point S and vector V
- The parametric form of a ray expresses it as a function as some scalar t, giving the set of all points the ray passes through:
 - \(r(t) = S + tV, \ 0 \leq t \leq \infty \)
- This is the form we will use
Computing Ray-Object Intersections

- If a ray intersects an object, want to know the value of t where the intersection occurs:
 - $t < 0$: Intersection is behind the ray, ignore it
 - $t = 0$: Undefined
 - $t > 0$: Good intersection
- If there are multiple intersections, we want the one with the smallest t
 - This will be the closest surface

The Sphere

- For today's lecture, we're only going to consider one type of shape
 - The sphere
- The implicit equation for a sphere is:
 - $r^2 = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2$
 - If we assume it's centered at the origin:
 - $r^2 = x^2 + y^2 + z^2$

Ray-Sphere Intersections

- So, we want to find out where (or if) a ray intersects a sphere
 - Need to figure out what points on a ray represent valid solutions for the sphere equation

Implicit Sphere

$0 = r^2 = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2$

Parametric Ray Equation

$r(t) = p + td$

Combined

Want to solve for the values of t that make this statement true:

Expand

Rearrange

$s = \frac{x_v^2 + y_v^2 + z_v^2}{r^2}$

$\frac{x}{x_v} = \frac{y}{y_v} = \frac{z}{z_v}$

Note that this is in the form $at^2 + bt + c = 0$

Can solve with the quadratic formula:

$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
There are three cases:
- No intersection
- 1 intersection
- 2 intersections

How do we detect them?
- Check the discriminant!

Using the discriminant
- \(D = b^2 - 4ac \)
 - If \(D = 0 \), there is one root
 - If \(D > 0 \), there are 2 real roots
 - If \(D < 0 \), there are 2 imaginary roots

So, for the 3 cases
- \(D < 0 \): Ray does not intersect the object
- \(D = 0 \): One intersection; solve for \(t \)
- \(D > 0 \): Two intersections
 - But we know we only want the closest
 - Can throw out the other solution

We derived the math for sphere objects in detail
The process is similar for other objects
- Just need to work through the math
- Using implicit surface definitions makes it easy

1. Generate the rays from the eye
 - One (or more) for each pixel

2. Figure out if those rays "see" anything
 - Compute ray-object intersections

3. Determine the color seen by the ray
 - Compute object-light interactions

Now, given a ray, we know how to test if it intersects an object
- But we don’t yet know how to generate the rays
- We talked a bit about lenses last time, but an ideal pinhole camera is still the simplest model
- So let’s assume that
Generating Rays

- Recall the pinhole camera model
 - Every point \(p \) in the image is imaged through the center of projection \(C \) onto the image plane
 - Note that this means every point in the scene maps to a ray, originating at \(C \)
 - That is, \(r(t) = C + tV \)
 - \(C \) is the same for every ray, so just need to compute new \(V \)s

Generating Rays

- Note that since this isn’t a real camera, we can put the virtual image plane in front of the pinhole
 - This means we can solve for the ray directions and not worry about flipping the scene

Generating Rays in 2D

Once we know this ray, the rest are easy

This is referred to as a “Pencil of Rays”

2D Frustum

- Note that this is the same idea as the frusta that we used in OpenGL:
 - Far Plane
 - Near Plane
 - Image Plane

Building a Frustum

- So we need to know the same things that we did to build an OpenGL view frustum
 - Field of View
 - Aspect Ratio
 - Do we need near and far planes?
 - Except now we need to build the camera matrix ourselves

Field of View

- Recall that the field of view is how “wide” the view is
 - Not in terms of pixels, but in terms of viewing angle (\(\theta \))

\[
V_0 = \left[\begin{array}{c}
\tan \frac{\theta}{2} \\
1
\end{array} \right]
\]
Finding the Other Rays

• This tells us all we need to know
• At least in 2D
• All the other rays are just “offset” from the first

\[\begin{align*}
V_1 &= V_0 + D \\
V_2 &= V_1 + D \\
V_0 &= \begin{pmatrix} \tan \theta \frac{D_z}{D_x} - \tan \theta \frac{D_z}{D_y} \\ \tan \theta \frac{D_z}{D_y} \\ 1 \end{pmatrix}
\end{align*} \]

NOTE: \(h \text{Res} \) is the horizontal resolution

Generating Rays in 2D

• Note that we’re assuming one ray per pixel
• Can have more
• For all \(i \) from 0 to \(h \text{Res} \):

\[V_i = [D V_0] \begin{pmatrix} i \\ 1 \end{pmatrix} \]

Extending to 3D

• So, this is all we need to know for 2D
• Just generates a single row of rays
• For 3D, need to also know the vertical resolution
• In the form of the aspect ratio

Quick Aside about Aspect Ratios

• With our virtual cameras, we can use any aspect ratio we want
• In the real world, though, some are most commonly used
 • 4:3 (standard video)
 • 16:9 (widescreen video)
 • 2.35:1 (many movies)

Aspect Ratios Example

<table>
<thead>
<tr>
<th>Aspect Ratio</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:3</td>
<td>Standard video</td>
</tr>
<tr>
<td>16:9</td>
<td>Widescreen video</td>
</tr>
<tr>
<td>2.35:1</td>
<td>Many movies</td>
</tr>
</tbody>
</table>

Cinerama (2.59:1)

Generating Rays in 3D

\[\begin{align*}
D_x &= \frac{\tan \theta \frac{D_z}{D_x} - \tan \theta \frac{D_z}{D_y}}{\tan \theta \frac{D_z}{D_y} - 1} \\
D_y &= 0 \\
D_z &= \frac{\tan \theta \frac{D_z}{D_x} - \tan \theta \frac{D_z}{D_y}}{\tan \theta \frac{D_z}{D_y} - 1} \\
V_0 &= \begin{pmatrix} \tan \theta \frac{D_z}{D_x} \\ \tan \theta \frac{D_z}{D_y} \\ -1 \end{pmatrix}
\end{align*} \]
Generating Rays in 3D

\[V_0 = \begin{bmatrix} \frac{2 \tan \frac{\theta}{2}}{2 \tan \frac{\theta}{2} - 1} \\ \frac{2 \tan \frac{\theta}{2}}{2 \tan \frac{\theta}{2} - 1} \\ -1 \end{bmatrix} \]

\[D_u = \begin{bmatrix} \frac{2 \tan \frac{\theta}{2}}{2 \tan \frac{\theta}{2} - 1} \\ 0 \\ 0 \end{bmatrix}, \quad D_v = \begin{bmatrix} 0 \\ -\frac{2 \tan \frac{\theta}{2} \cos \theta}{2 \tan \frac{\theta}{2} - 1} \\ 0 \end{bmatrix} \]

\[V_{ij} = [D_u \ D_v \ V_0] \begin{bmatrix} i \\ j \\ 1 \end{bmatrix} \]

A Basic 3D Camera Matrix

\[
\begin{bmatrix}
V_x \\
V_y \\
V_z
\end{bmatrix} = \begin{bmatrix}
\frac{2 \tan \frac{\theta}{2}}{2 \tan \frac{\theta}{2} - 1} & 0 & -\frac{2 \tan \frac{\theta}{2} \cos \theta}{2 \tan \frac{\theta}{2} - 1} \\
0 & 1 & 0 \\
-\frac{2 \tan \frac{\theta}{2} \cos \theta}{2 \tan \frac{\theta}{2} - 1} & 0 & -1
\end{bmatrix} \begin{bmatrix}
i \\
j \\
1
\end{bmatrix}
\]

- Assumes:
 - Camera on the z-axis
 - Looking down -z
 - Ideal pinhole model
 - Fixed focal length (focal length = 1)

Generating an Image

1. Generate the rays from the eye
 - One (or more) for each pixel
2. Figure out if these rays “see” anything
 - Compute ray-object intersections
3. Determine the color seen by the ray
 - Compute object-light interactions

- Bonus Movie:
 - Portal Half-Life 2 Mod
 - Available online:
 http://www.youtube.com/watch?v=gKg3TUPQ8Sg

Determining Color

- Since we’re not yet talking about tracing rays
- Really just talking about OpenGL-style lighting and shading
- Since surfaces are implicitly defined, can solve Phong lighting equation at every intersection

- Review: Phong Lighting
 - Ambient
 - Diffuse:
 \[I = I_a(R_a, L_a) + I_d(n, I, R_d, L_d, a, b, c, d) \]
 + \[I_s(r, v, R_s, L_s, n, a, b, c, d) \]
 - Specular:
 \[R_{something} \]
 - \[L_{something} \]
 - In practice, these are each 3-vectors
 - One each for R, G, and B
Phong Reflection Model: Ambient Term

• Assume that ambient light is the same everywhere
• Is this generally true?
• \(I_a(n_a, l_a) = R_a \cdot L_a \)
• The contribution of ambient light at a point is just the intensity of the light modulated by how reflective the surface is (for that color)

Phong Reflection Model: Diffuse Term

• \(I_d(n, l, R_d, L_d, a, b, c, d) = (R_d / (a + bd + cd^2)) \cdot \max(l \cdot n, 0) \cdot L_d \)
• \(a, b, c \): user-defined constants
• \(d \): distance from the point to the light
• Let’s consider these parts

Lambert’s Cosine Law

• The incident angle of the incoming light affects its apparent intensity
• Does the sun seem brighter at noon or 6pm?
• Why?

• “Noon”
• “Evening”

Phong Reflection Model: Diffuse Term

• We already know how light is reflected between the light direction and the normal
• \(n \cdot l \)
• What happens if the surface is facing away from the light?
• That’s why we use \(\max(n \cdot l, 0) \)
• Why not just take \(|n \cdot l| \)?

Phong Reflection Model: Specular Term

• \(I_s(r, v, R_s, L_s, n, a, b, c, d) = (R_s / (a + bd + cd^2)) \cdot \max(r \cdot v, 0)^n \cdot L_s \)
• Why \(r \cdot v \)?
• Reflection is strongest in the direction of the reflection vector
• \(r \cdot v \) is maximized when the viewpoint vector (or really the vector to the viewpoint) is in the same direction as \(r \)
• What is \(n \)?
Generating an Image

1. Generate the rays from the eye
 • One (or more) for each pixel
2. Figure out if those rays “see” anything
 • Compute ray-object intersections
3. Determine the color seen by the ray
 • Compute object-light interactions

Review

• Reviewed the basic ray tracing algorithm
• Talked about how ray casting is used
• Derived the math for generating camera rays
• Derived the math for computing ray intersections
• For a sphere

Next Time

• Extending the camera matrix to be more general
• Covering some software engineering notes relating to building a ray tracer