CoMP 633

Kuwmee ek al.

C,\r\u":\”er 3

ex rroeks

CHAPTER 3

Basic Communication
Operations

In meost parallel algorithms, processors need to exchange data. This exchange of data sig-
nificansly affects the efficiency of parailel programs by introducing communication delays
during their execution. There are a few common basic patterns of interprocessof COMIMUni-
cation that are frequently used as building blocks in a variety of parallel algorithms. Proper
implementation of these basic communication operations on various parallel architectures
is akey to the efficient execution of the paraliel algorithms that use them.

In this chapter, we present efficient algorithms for some basic communication oper-
ations on the ring, two-dimensional mesh. and hypercube architectures. For pedagogical
reasons we assume that the mesh is a square two-dimensional array of processors with
end-io-end wraparound connections in both dimensions. The time taken for any of these
operations increases at most by a factor of four in the absence of wraparound connections
{Problem 3.14). Although it is unlikely that large scale parallel computers will be based
on the ring topology, it is important to understand various communication operations in the
context of rings because the rows and columns of wraparound meshes are rings. Parallei al-
gorithms that perform rowwise or columnwise communication on wraparound meshes use
ring algorithms. Furthermore, the algorithms for a number of communication operations
01 a mesh are simple extensions of the corresponding ring algorithms in two dimensions.

We describe the procedures to implement the basic communication operations for
both store-and-forward (SF) and cut-through (CT) routing schemes (Section 2.7). We
assume that the communication links are bidirectional; that is, two directly-connected
processors can send messages of size m to each other simultaneously in time #; + f,m,
where t; is the message startup time and r,, is the per-word transfer time. We also assume
that a processor can send a message on only one of its links at'a time. Similarly, it ¢an

65

&6 Basic Communication Operations

receive a message on only one link at a time. However, a processor can receive a message
while sending another message at the same time on the same or a different link.

In the following sections we describe various communication operations and derive
expressions for their time complexity on a variety of paralle!l architectures. Many of the
operations described here have duals and other related operations that we can perform
by using procedures very similar to those for the original operations. The dual of a
communication operation is the opposite of the original operation and can be performed
by reversing the direction and sequence of messages in the original operation. We will
mention such operations wherever applicable.

3.1 Simple Message Transfer
between Two Processors

Sending a message from one processor to another is the most basic communication opera-
tion. Recall from: Section 2.7.1 that, with SF routing, sending a single messege containing
m words takes f; + t,ml time, where [is the number of links traversed by the message.
On an ensemble of p processors, I is at most | p/2] for a ring, 2|./p/2] for a wraparound
square mesh, and log p for a hypercube (assuming that messages are sent on the short-
est path between the source and the destination processors). Thus, with SF routing, the
time for a single message transfer on ring, mesh, and hypercube has an upper bound of
&+ tom|p/2l, bt + 26,m|/P/2), and 7 + tenlog p, respectively. if CT routing is
available, then a message can be sent directly from the source to a destination / links away
in time £; - t,m - 1yl {Section 2.7.2), where #, is the per-hop time.

If the size m of the message is very small, the time for a single message transfer is
similar in both SF and CT routing schemes. In both cases, it is the sum of a constant and
a term proportional to. the shortest distance between the processors. On the other hand, if
the message is large (that is, m >» 1), then the distance between the processors becomes
unimportant on a parallel comnputer using CT routing. For such messages, the time for a
single message transfer between any two processors with CT routing is approximately the

same as the message transfer time between directly-connected processors on an SF routing
network.

3.2 One-to-All Broadcast

Parailel algorithms often require a single processor to send identical data to all other
processors or to a subset of them. This operation is known as one-to-all breadcast or
single-node broadcast. Initiaily, oniy the source processor has the data of size m that
needs to be broadcast. At the termination of the procedure, there are p copies of the
initial data—one residing at each processor. Figure 3.1 shows one-to-all broadeast of a

message M among p processors. The related problem of k-fe-all broadcast is defined in
Problem 3.21,

3.2 One-to-All Broadcast 67

One-to-al} broadcast
M M

® O ®

M M

Single-node accumulation

Figure 3.1 One-tc-all broadcast and single-node accumulation.

A parallel algorithm may require that a single processor accumulates information
from every other processor. This operation is known as single-node accumulation, and is
the dual of one-to-all broadeast (Figure 3.1). In single-node accumulation, every processor
initially has a message containing m words. The data from alf processors are combined
through an associative operator, and accumulated at a single destination processor. The total
size of the accumulated data remains m after the operation. Thus, single-node accumulation
can be used to find the sum, product, maximurm. or minimum of a set of numbers, or perform
any bitwise operation on elements of the set.

One-to-all broadcast and single-node accumulation are used in' several important
parallel algorithms including matrix-vector multiplication, Gaussian elimination, shortest
paths, and vector inner product. In the foilowing subsections, we consider the implemen-

tatien of one-to-all broadcast in detail on a variety of architectures using both SF and CT
routing schemes,

3.2.1 Store-and-Forward Routing

A naive way to perform one-to-all broadcast is to sequentially send p ~ 1 messages from
the source io the other p — | processors. This is quite wasteful becanse with SF routing,
a message traveling over more than one link is stored on all intermediate processors. We
can avoid redundant transmission of the same message if every processor makes a copy of’
the message upon receiving it, and then forwards it to the next processor. We now present

efficient ways to implement one-to-all broadcast with SF routing on the ring, mesh. and
hypercube architectures.

Ring

The steps in a one-to-alt broadcast on an eight-processor ring are shown in Figure 3.2, The
processors are labeled from € to 7. Each message transmission step is shown by a numbered,
dotted arrow from the source of the message to its destination. Arrows indicating messages
sent during the same time step have the same number. As shown in Figure 3.2, the source
processor sends the message to its two neighbors in successive steps. Each processor
receives a message on one of its links and passes that message 1o its neighbor on the second
link, This process continiues until ali processors have a copy of the message. The entire
procedure requires | p/2] steps on a p-processor ring. Each of the [p/2] nearest-neighbor
communications takes #; + #,#n time, so the comumunication time of one-to-all broadcast

68 Basic Communication Cperations

Figure 3.2 One-ic-all broadcast on an eight-processor
ring with SF routing. Processor 0 is the source of the
broadcast. Each message transfer step is shown by a
numkbkered, dotted arrow from the scurce of the message
to its destination. The number on an arrow indicates the
time step during which the message is transferred.

on a ring with SF routing is

Tane.m.a” = (Ia + Iwr”) [g-l - (31)

Example 3.1 Matrix-Vector Multiptication

Consider the problem of multiplying an n x » matrix with ann x 1 vectoronann x i
mesh of processors. As shown in Figure 3.3, each element of the matrix resides on a
different processor, and the vector is distributed among the processors in the toprost
row of the mesh. Since all the rows of the matrix must be multiplied with the vector,
each processor needs the element of the vector residing in the topmost processor
of its column. Hence, before computing the matrix-vector product, each column of
processors performs a one-to-all broadcast of the vector elements with the topmost
processor of the column as the source. This is done by treating each column of the
n x n mesh as an r-processor ring, and simultaneously applying the ring broadcast
procedure described previously to all coiumns. |

Mesh

We can regard each row and cotumn of a square mesh of p processors as a ring of ,/p
processers. So a number of communication algorithms on the mesh are simple extensions
of their ring counterparts. Every ring communication operation discussed in this chapter
can be performed in two phases on a mesh. In the first phase, the operation is performed
along one or all rows by treating the rows as rings. In the second phase, the colvmns are
treated simitariy.

3.2 One-to-All Broadcast 69

Processor boundaries

B I -~ Vector

1
'
1
|
1
-
'
'
'
1
|
|
o
|
'
'
|
'
'
|
|
'

Figure 3.3 One-to-all broadcast in the multiplication of a
4 x 4 matrix with a4 x 1 vector.

Consider the problem of one-to-all broadcast on a two-dimensional square mesh with
+/P tows and /5 columns, First, a one-to-all broadcast is performed from the source to
the remaining (/7 ~ 1} processors of the same row, Once all the processors in a row
of the mesh have acquired the data, they initiate 4 one-to-all broadeast in their respective
columns. At the end of the second phase, every processor in the mesh has a copy of the.

‘initial message. The communication steps for one-to-al! broadcast on a mesh are illustrated

in Figure 3.4 for n = 4, with processor 0 at the bottom-left comner as the source. Steps 1
and 2 correspond to the first phase, and steps 3 and 4 correspond to the second phase.

If the size of the message is m, the row broadcast takes (7, + 1,,72) [/P/2] time. This
is the same as the time required for one-to-ail broadcast on a ring of NI processors. In
the second phase, the one-to-all broadcasts in all the columns are carried out in parallel.

Hence, the second phase takes the same amount of time as the first, and the time for the
entire broadcast is

Tone to.ait = 2{t; + tyim) [g-l . (3.2)

We can use a similar procedure for one-to-afl broadcast on a three-dimensional mesh
as weil, In this case, rows of p'/? processors in each of the three dimensions of the mesh

are treated as rings. By applying the procedure for the ring in three phases, once along
each dimension, the broadcast time is

Pl/ﬂ
Tone o att = 35 + tht} "71 - (3.3)

70

Figure 3.4 One-to-all broadcastona16-
processor mesh with SF routing.

Hypercube

The previous subsection showed that one-to-all broadcast is performed in twe phases ona
two-dimensional mesh, with the communication taking place along a different dimension
in each phase. Similarly, the process is carried out in three phases on a three-dimensional
mesh. A hypercube with 2¢ processors can be regarded as a d-dimensional mesh with
two processors in each dimension. Hence, the mesh algorithm can be extended for the
hypercube, except that the process is now carried out in o steps—one i each dimension.

(10 3. (i

Figure 3.5 One-to-ali broadcast on a three-dimensional
hypercube. The binary representations of progessor la-
bels are shown in parentheses.

3.2 One-to-All Broadcast 71

1. procedure ONE_TO_ALL BC(d, my.id, X}
2. begin
3, mask :=72¢ — 1; /% Set ali 4 bits of mask o 1 #/
4. fori:=d ~ 1 downto Odo /* Outer loop */
5. begin
6. mask = mask XOR 2, /* Set bit i of maskto 0 */
7. if (my_id AND mask) = 0 then
7% If the lower i bits of my id are 0 %/
8. if (my id AND 2'} = 0 then
9. begin
10. msg_destination = my_id XOR 2;
11. send X to msg_destination;
12. endif
13. else
14, begin
15, . msg source ‘= my_id XOR 2/,
16. receive X from msg _source;
17. endelse;
18. endfor;

19. end ONE_TO_ALL BC

Program 3.1 One-to-all broadcast of a message X from processor 0 of a d-dimensional

nypercube. AND and XOR are bitwise logical-and and exclusive-or operations, respec-
tively.

Each step is a one-to-all broadcast on a two-processor ring, which is the same as a simple
message transfer between two directly-connected processors.

Figure 3.5 shows a one-to-all broadcast on an eight-processor hypercube with pro-
cessor 0 as the source. As the figure shows, there is a total of three communication steps.
Note that the order in which the dimensions are chosen for communication does not affect
the outcome of the procedure. Figure 3.5 shows only one such order. In this scheme,
communication starts along the highest dimension (that is, the dimension specified by the
most significant bit of the binary representation of a processor label} and proceeds along
successively lower dimensions in subsequent steps. Each of the log p steps takes t; -+ tym
time for a single message transfer in each dimension. Therefore, the total time taken by the
procedure on a p-processor hypercube is '

Tane..ra_a.ll = (ts + twm) 10g P (34)

Example 3.2 A One-to-All Broadcast Procedure for Hypercube
In this example, we describe a procedure ONE_TO_ALL BC(d, my_id, X) to imple-

72

Bassic Communicaiion Operations

ment the one-to-all broadcast algorithm on a d-dimensional hypercube. Program 3.1
gives the pseudocode for this procedure when processor 0 is the source of the broad-
cast. The procedure is executed at all processors concurrentiy. At any processor, the
value of my_id is the label of that processor.

Let X be the message to be broadcast, which initially resides at the source
processor 0. The procedure performs d communication steps, one in each dimension
of the hypercube. In Program 3.1, communication proceeds from the highest to
the lowest dimension (although the order in which dimensions are chosen does not
matter). The loop counter i indicates the current dimension of the hypercube in
which commurication is taking place. Only the processors with zero in the 7 least
significans bits of their labels pardcipaie in communication atong dimension /. For
instance, on the three-dimensional hypercube shown in Figure 3.3, i is equal to 2 in
the first time step. Therefore, only processors 0 and 4 communicate, since their two
least significant bits are zero. In the next time step, when i = 1, all processors (that
is, 0, 2, 4, and &) with zero in their least significant bits participate in communication.

The variable mask helps determine which processors communicate in a partic-
ular iteration of the loop. The variable mask has d (= log p) bits, ail of which are
initially set 1o one (line 3). At the beginning of each iteration, the most significant
nonzero bit of mask is reset to zero {line 6). Line 7 determines which processors
communicate in the current iteradion of the outer loop. For instance, for the hy-
percube of Figure 3.5, mask is initially set to 111, and it would be 011 during the
iteration corresponding to i = 2 (the i least significant bits of mask are ones). The
AND operation on line 7 selects only those processors which have zero in their / least
significant bits.

Among the processors selected for communication along dimension i, the
processors with a zero in bit pesition { send the data, and the processors with a one in
bit position i receive it The Lest to determine the sending and receiving processors is
performed on line 8. For example, in Figure 3.5, processor 0 (000) is the sender and
processor 4 (100) is the receiver in the iteration corresponding to { = 2. Simifarly,
for i = 1, processors 0 (000) and 4 (100) are senders while processors 2 (010) and
6 (110) are receivers.

The procedure terminates after communication has taken place along ail di-
IMensions. [|

Example 3.3 A General One-to-All Broadcast Procedure for Hypercube

Program 3.1 waorks only if processor 0 is the source of the broadcast. For an arbitrary
source, we must relabet the processors of the hypercube by XORing the label of each
processor with the label of the source processor before we apply this procedure. A
modified one-to-all broadcast procedure that works for any value of source between 0
and p — 1 is shown in Program 3.2, By performing the XOR operation at line 3,
Program 3.2 relabels the source processor to 0, and relabels the other processors

32 One-to-All Broadcast 73

1. procedure GENERAIL _ONE_TO_ALL BC(d, my_id, source, X}

2. begin :

3 my_virtual id == my_id XOR source;

4, mask =29 - 1;

5. fori :=d — 1downtoOdo /* Quterloop */

6. begin

7. mask := mask XOR 2'; /% Set bit i of maskto 0 %/

8. if (my_virtual id AND mask) = 0 then

9, if (my virtual id AND 29) = 0 then

10. begin

11. virtual_desr .= my_virtual_id XOR 2/,

12. send X to {virtual.dest XOR source); /* Convert virtucl_dest
to the label of the physical destination */

13. endif

14. else

5. begin

16. virtual _source := my_virtual_id XOR 2/,

17. receive X from (virtual_source XOR source),

I* Converl virtual_source to the label of the physical source #/
i8. endelse;
19. endfor;

20. end GENERAL_ONE_TO_ALL BC

Program3.2 One-to-all broadcast of a message X initiated by seurce in a d-dimensional
hyparcube. The AND and XOR operations are bitwise logical operations.

relative to the source. After this relabeling, the algorithm of Program 3.1 can be

applied to perform the broadcast. a

Example 3.4 A Hypercube Procedure for Single-Node Accumulation

Program 3.3 gives a procedure to perform a single-noﬁe accumulation on a d-
dimensional hypercube such that the final result is accumulated on processor 0.
Single nede-accumulation is the dual of one-to-all broadcast. We obtain the com-
munication pattern required to implement single-node accumulation by reversing
the order and the direction of messages in one-to-all broadcast. Procedure SIN-
GLE NODE_ACC(d, my_id, m, X, sum) shown in Program 3.3 is very similar to
procedure ONE_TO_ALL BC(d, my_.id, X) shown in Program 3.1. One difference
is that the communication in single-node accumulation proceeds from the lowest
to the highest dimension, This change is reflected in the way that variables mask
and / are manipulated in Program 3.3, The criterion for determining the source and
the destination among a pair of communicating precessors is also reversed (line 8).

74 Basic Communication Coerations

1. procedure SINGLE NODE_ACC(d, mydid, m, X, sum)
2. begin
3. for j :==0tom — 1dosum[j]:=X[j}
4, mask =0,
3. fori:=0tod —1do
6. begin /* Select processors whose lower { bits are 0 */
7. if (my_id AND mask) = 0 then
8. if (my_id AND 2/} =£ 0 then
9. begin
10. msg.destination ;= my_id XOR 2";
11. send sum to msg destination;
12. endif
13, else
14. begin
15. msg_source ;= my_id XOR 2/,
16. receive X from msg_source;
17. for j:=0tom — tdo
18. sum[] =sum{j1+X[j1;
19. endelse;
20, mask 1= mask XOR 2; /* Set bit i of mask to 1 #/
21. endfor; -
22. end SINGLE_NODE_ACC

Program 3.3 Single-node accumulation on a d-dimensional hypercube. Each processor
contributes a message X containing m words, and processor 0 is the destination of the
sum. The AND and XOR operations are bitwise logical operations,

Apart from these differences, procedure SINGLE-NODE_ACC has extra instructions
(lines 17 and 18} to add the contents of the messages received by a processor in each
iteration.

Note that any associative operation can be used in place of addition. [

Among the architectures considered so far, one-to-all broadcast takes the shortest
time on a hypercube because a hypercube has a higher connectivity than a ring or a mesh.
In Section 3.7.1 we show how we can further reduce the communication time of this
procedure by splitting the message into smaller parts and routing each part separately.
However, if a message is not routed in parts along separate paths and communication is
allowed on only one link of each processer at a time, then one-to-all broadcast cannot be
performed in less than (¢, -+ #,m)log p time on any architecture. This can be inferred
from two observations regarding the hypercube procedure iilustrated in Figure 3.5, First,
at any time, each processor that possesses the data is sending that data to a processor that

3.2 One-to-All Broadeaost 75

Figure 3.6 One-to-all broadcast with T routing on an
eight-processor ring,

needs it. This is not the case with the ring and the mesh algorithms. For instance, in
Figure 3.2, processor 0 does not communicate in steps 3 or 4, although it has the message

being broadcast, and there are processors waiting for it. Second, all messages are passed

only between directly-connected processors on the hypercube; hence, each communication
step is of the minimum possible duration for a message of size m. Thus, on a hypercube,
every opportunity to send a message is used and each message transfer is of the smallest
possible duration for the given message size. A better-connected architecture sannot send
any more messages at a time, or reduce the transfer time for any message (for the same 7,

ru.., and m). Hence, the time {t, + 1,,m) log p is the best for one-to-ail broadcast under the
given conditions.

- 3.22 Cut-Through Routing

F)f the three architectures considered in Section 3.2.1, one-to-~all broadcast with SF rout-
Ing is fastest on the hypercube. The communication time of one-to-all broadcast on a

hypercube does not imprave with CT routing due to exclusively nearest-neighbor commu-

- hication. However, the operation benefits substantially from CT routing on ring and mesh

architectures,

Ring

CT routing can be used advantageously for one-to-all broadcast on a ring by mapping the

h}fpcrcube algorithm onto the ring, In every step, each processor of the ring communicates
W}th the same processor as in the hypercube algorithm. This process is illustrated in
‘Figure 3.6 for an eight-processor ring. Comparing Figure 3.5 with Figure 3.6 shows that.
in .both cases, communication takes place between the same pair of processors in each siep.
Wlth CT routing, such a mapping is useful because the cemplexity of passing a.message of
§ize m between processors separated by ! links is only @ (m + 7). As Figure 3.6 illustrates,

76 Baslc Communication Operations

Figure 3.7 One-to-all broadcast on a
16-processor square mesh with CT rout-
ing.

in a p-processor ring the source processor first sends the data to a processor at a distance
p/2. In the second step, both processors that have the data transmiit it to processors at a
distance of p/4 in the same direction. Assuming that p is a power of 2, in the i step, each
processor that has the data sends it 1o a processor at a distance of p/2{. All messages flow
in the same direction. The algoerithm concludes after log p steps. '

The communication time in the i step is #; + tym + 4, p/2). Hence, the total time
for the broadcast with CT routing on a ring of p processors is

log p
Tone—tomail = Z(Is + tom 4ty p/2h)

i=1

t:logp+tymlog p+t(p —1). (3.5)

il

For sufficiently large values of m, the #, term is insignificant compared to the others. Thus,
CT routing effectively reduces the communication time by a factor of p/log p over SF
routing. For example, if m = $2{p/log p), then a one-to-all broadcast takes & (p?/log p)
time on ring with SF routing, but only ®(p) time with CT routing.

'Mesh

On a two-dimensional sguare mesh with CT routing, one-to-all broadcast is performed in
two phases. In each phase the ring procedure is applied in a different dimension of the
mesh. The procedure is illustrated in Figure 3.7 for a 16-processor mesh. First, a one-to-all
broadcast is initiated by the source processor among the .. /p processors in its row (call it
the source row). Second, a one-to-all broadeast is initiated in each column by its processor
in the source row. Each of the two phases takes (¢ + f,m)} log JPF (/P — 1) ime, and

3.3 Al-to-All Broadcast, Reduction, and Prefix Sums 77

Figure 3.8 One-to-all broadcast on an eight-processor tree.

the time for the entire broadcast is

Tone_w_a!l = (fs + Iwm) 108}? + 2:.'1'('\/}—7 - 1) {36)

Every communication step in the 16-processor mesh shown in Figure 3.7 takes place -
between exactly the same processors as in a 16-processor hypercube, Note that steps 2,
3, and 4 of Figure 3.7 are identical to steps 1, 2, and 3 of Figure 3.5. Like the one-to-all
broadcast procedure for a ring with cut-through routing. the mesh procedure is also a direct
adaptation of the hypercube procedure given in Programs 3.1 and 3.2. :

Balanced Binary Tree

The hypercube algorithm for one-to-all broadcast maps naturally onto a balanced binary
tre¢ in which each leaf is a processor and intermediate nodes serve only as sWitching units.
This is illustrated in Figure 3.8 for eight processors. In this figure, the communicating
processors have the same labels as in the hypercube aigorithm iflusirated in Figure 3.5.
Figure 3.8 shows that there is no congestion on any of the communication links at any
time. The difference between the communication on a hypercube and the tree shown in
Figure 3.8 is that there is a different number of switching nodes along differeni paths on
the ree. Assuming that a per-hop time of 1, is associated with each link between two
switching nodes or between a processor and a switching node, the time for one-to-ail
broadcast (Problem 3.1) on the tree is

Toneoati = (ts + tm + ty(log p + D) log p. (3.7)

3.3 All-to-All Broadcast, Reduction,

and Prefix Sums

All-to-afl broadcast, also known as multinode broadeast. is a generalization of one-to-
all broadcast in which all p processors simultareously initiate a broadcast. ' A processor

78 Basic Communication Operations

My, M, M

All-to-all broadcast

M, M v
My, M, Mo, My, M, M
@ @ ... Muitinede accumulation @ @ ..

Figure 3.9 All-ic-all broadcast and multinede accumulation.

=]

sends the same m-word message to every other processor, but different processors may
broadcast different messages. All-to-all broadcast is used in matrix operations, including
matrix multiplication and matrix-vector multiplication. The dual of all-to-all broadcast
is multinode accumulation, in which every processor is the destination of a single-nede
accumulation (Problem 3.8). Figure 3.9 illustrates all-to-all broadcast and multinode
accumulation.

The communication pattern of all-to-all broadcast can be used to perform some other
operations as weil, such as, reduction and prefix sums. Examples 3.7 and 3.8 discuss
reduction and prefix sums on a hypercube.

One way to perform an all-to-all broadcast is to perform p one-to-all broadcasts, one
starting at each processor. If performed naively, on some architectures this approach may
take up to p times as long as a one-to-all broadcast. It is possible to use the communica-
tion links in the interconnection network more efficiently by performing all p one-to-all
broadcasts simultaneously so that all messages traversing the same path at the same time
are concatenated into a single message whose size is the sum of the sizes of individual
messages.

The following sections describe all-to-all broadcast on ring, mesh, and hypercube
topelogies using both SF and CT routings.

3.3.1 Store-and-Forward Routing
Ring

The one-to-all broadcast procedure shown in Figure 3.2 for a ring with SF routing shows
that at most two communication links are active during any given time step. For all-
to-all broadcast, all channels can be kept busy simuitaneously because, unlike one-to-all
broadcast, each processor always has some information that it can pass along to its neighbor.
Each processor first sends to one of its neighbors the data it needs to broadcast. In subsequent
steps, it forwards the data received from one of its neighbors to its other neighbor.

Figure 3.10 illustrates this procedure for an eight-processorring. As with the previous
figures, the integer label of an arrow indicates the time step during which the message is
sent. In ali-to-all broadcast, p different messages circulate in the p-processor ensemble,
In Figure 3.10, each message is identified by its initial source, whose label appears in
parentheses along with the time step. Forinstance, the arc labeled 2 (7) between processors 0

3.3 Ali-to-All Broadeast, Reduction, and Prefix Surns 79

L (&) 1 L@
R T P U
7 7o) (D 4
&} (6) (5) @ A
Lo L
P A@ F\(i @ @ First communication step

Q 1 m

N 2/ 3

2 (6} 242

Second communication step

7 @ TN 7 (6}
e s S
7 4]
O & \3/ @A
Polossaznn 634210 (5432107 ,3.2,1076)
T s
; 0765432 (1076543 2107654 (32.1.0763) Seventh communication siep
0 Oy i
O 1 2 3
SO e B GO -
7@ 7 7@

Figure 3.10 Ail-to-all sroadcast on an eight-processoer ring with SF routing. In addition
t0 the time step, the label of each arrcw has an additional number in parentheses.
This number labels a message and indicates the processor from which the méssage
originated in the first step. The number(s) in parentheses next to each processor are
the fabels of processors from which data has been recsived prior to the communication
step. Only the first, second, and last communication steps are shown.

80 Basic Communication Ope_roﬁons

and 1 represents the data communicated in time step 2 that processor 0 received from
processor 7 in the preceding step, As Figure 3.10 shows, if communication is performed
circularly in a single direction, then each processor receives all ¢ p— 1) pieces of information
from all other processors in (p — 1) steps. The time taken by the entire operation is

Taitzo_ it = {5 + wm)(p —1). (3.8)

The straightforward ail-to-all broadeast algorithm presented above for a simple ar-
chitecture like a ring with SF routing has great practical importance. A close look at the
algotithm reveals that it is a sequence of p one-to-all broadrasts, each with a different
source. These broadcasts are pipelined so that all of them are compiete in a total of p
nearest-neighbor communication steps. Many parallel algorithms involve a series of one-
to-all broadeasts with different sources, often interspersed with some computation. If cach

one-to-all broadcast is performed using the hypercube algorithm given in Section 3.2.1,-

then the tota time spent in communication is n(z, + tpin) log p, where n is the number of
broadcasts. On the other hand, by pipelining the broadcasts as shown in Figure 3.10, ali the
of them can be performed spending no more than (¢, -+ tym) (p—1) time in communication,
provided that the sources of all broadcasts are different and n < p. In later chapters, we
show how such pipelined broadcast improves the performance of some parallel algorithms
such as Gaussian elimination {Section 5.5.1), back substitation (Sectdon 5.5.3), Fox’s al-
gorithm for matrix multiplication (Problem 35.23), and Floyd’s algorithm for finding the
shortest paths in a graph {Section 7.4.3).

Mesh

Just like one-to-all broadcast, the all-to-all broadcast algorithm for the 2-D mesh is based
on the ring algorithm, treating rows and columns of the mesh as rings. Once again,
communication takes ptace in two phases. In the first phase, each row of the mesh performs
~an all-to-all broadcast using the procedure for the ring. In this phase, all processors coilect
/P messages corresponding to the ,/p processors of their respective rows. Each processor
consolidates this information into a single message of size m./ 7, and proceeds to the second
communication phase of the algorithm, The second communication phase is a columnwise
all-to-all broadcast of the consolidated messages. By the end of this phase, each processor
obtains all p pieces of m-word data that originally resided on different processors. The
distribution of data among the processors of a 3 x 3 mesh at the beginning of the first and
the second phases of the algorithm is shown in Figures 3.11¢a) and (b), respectively.

The first phase of , /7 simultaneous all-to-all broadcasts (each among /7 processors)
concludes in time (¢, + tym)(,/p — 1). The number of processors participating in each
all-to-all broadeast in the second phase is also ./, but the size of each message is now
m./p. Therefore, this phase takes (1, + twm/p)(/B — 1) time to complete. The time for
the entire all-to-all broadcast on a p-processor two-dimensional square mesh is the sum of
the times spent in the individual phases, which is

Tatt zoatt = 20 (fp — 1) + tum(p — 1), (3.9)

33 Al-to-All Brogdeast, Reduction, and Prefix Sums. 81

(6,7.8) (6.7,8)

EXCHEN 345 7
3 (25 5\4

[RB] {012

(a) Initial data distribution (b) Data distribution after rowwise broadcast

Figure 3.11 All-ic-all broadeast on a 3 x 3 mesh. The groups of precessors commu-
nicating with each other in each phase are enclosed by doited boundaries. By the end

of the second phase, all procassors get (0,1,2,3,4,5,6,7) {that is, a message from each
processor). ’

Example 3.5 Procedures for All-to-All Broadcast on Ring and Mesh -

Programs 3.4 and 3.5 give procedures for all-to-ail broadeast on a p-processor ting
and a p-processor mesh, respectively. The initial message to be broadcast is known
locally as my_msg at each processor. At the end of the procedure, each processor
stores the collection of all p messages in resule. As the programs show, all-to-ail

broadcast on a mesh appiies the ring procedure twice, once along the rows and once

aleng the columns. L]

_ Hypercube

The hypercube algorithm for all-to-all broadcast is an extension of the mesh algorithm to
log p dimensions. The procedure requires log p steps. Communication takes place along
a different dimension of the p-processor hypercube in each step. In every step, pairs of
Processors exchange their data and double the size of the message 1o be transmitted in the
next step by concatenating the received message with their current data, Figure 3.12 shows
these steps for an eight-processor hypercube with bidirectional communication channelis.
The size of the messages exchanged in the i of the log p steps is 27'm. The time it takes
a pair of processors to send and receive messages trom each other is ¢, + 2=, m. Hence.

Basic Communication Operations

3.3 All-to-All Broadcast, Reduction, and Prefix Sums 83

1 procedure ALL TO_ALL BC_RING(my.id, my_msg, p, resulp)
2 begin

3 left = (myid — 1) mod p;

4 right = (my.id + 1) mod p;

5. result 1= my.msg;

] msg = result,

7 fori:=1top- 1do

8

o

begin
) send msg to right;
10. receive msg from left;
11. result 1= result \J msg,
12. endfor;

13, end ALL_TO_ALL BC_RING

Program 3.4 Ali-to-afl broadcast on a p-processor ring.

the time it takes to complete the entire procedure is

log p
i—~1
Tat‘!_ro_ati = E (t; -+ 2 fyt}
i=l

Llogp + tym(p ~ 1). (3.10)

Example 3.6 An All-to-All Breadcast Procedure for Hypercube

Program 3.6 gives a procedure for implementing all-to-all broadcast on a d-dimen-
sional hypercube. Communication starts from the lowest dimension of the hypercube
and then proceeds along successively higher dimensions (line 4). In each iteration,
Processors communicate in pairs so that the labels of the processors communicating
with each other in the i"" iteration differ in the i least significant bit of their binary
representations (line 6). After an iteration’s communication steps, each processor
concatenates the data it receives during that iteration with its resident data {line 9).
This concatenated message is transmitted in the following iteration, n

Example 3.7 Reduction on a Mypercube

The communication pattern used in all-to-all broadecast is employed in other hy-
percube algorithms as well. For example, consider the operation in which every
processor of a hypercube starts with one value and aeeds to know the sum of the
values stored at all the processors. This operatton is known as reduction. In general,
any associative operation (such as logical OR, logical AND, maximum, or minimum)
can be used instead of addition. Reduction is often used to implement barrier syn-
chronization (Section 13.4.2) on a message-passing computer. The semantics of the

1. procedure ALL.TO.ALL BC_MESH(my_id, mynsg, p, result)

2. begin

/* Communication aleng rows */

3 lefr = (my_id — 1) mod P
4 right ;= (my_id + 1) mod p;
5 result = my msg;

6. msg 1= result;

7 fori:=1to /p—1do

8 begin

G send msg to right;

10. receive msg from left,
11, result i= result U msyg,
12. endfor;

/* Communication zlong columns */
13. up = (mey_id — /p) mod p;

14. down = (my_id + /p) mod p;
15. msg 1= result;

16. fori:=1to./p—1do

17. begin

18. send msg to dowr,

19. receive msg from up;

20. result = result \J msg;

21, endfor;

22, end ALL_TO_ALL BC_MESH

Program 3.5 Ali-to-all broadcast on a square mesh of p processors.

reduction operation are such that, while execuiing a parallel program, no processor
can finish reduction before each processor has contributed a value,

A naive algorithm for reduction would perform an all-to-afl broadcast, gather
all the numbers at each processor, and then add them locally «n all processors.
Since the message size m is one word, the communication time of this procedure
s thlogp + tu(p — 1). A faster methed to perform reduction is te perform a
single-node accumulation followed by a one-to-all broadeast. However, there is an
even faster way to perform reduction by using the communication pattern of ail-
to-all broadeast. . Figure 3.12 illustrates this algorithm for p = 8. Assume that
each integer in parentheses in the figure, instead of denoting a message, denotes a
number to be added that originally resided at the processor with that integer label.
To perform reduction, we follow the communication steps of the all-to-all broadeast

84

Basic Communication Operations

(c) Distribution before the third 'step‘ (d) Final distribution of messages

Figure 3.12 Allto-all broadcast on an eight-processor hypercube,

procedure, but at the end of each step, add two numbers instead of concatenating two
messages. At the termination of the reduction procedure, each processor holds the
sum {0 + L +2+ ... 4 7) (rather than eight messages numbered from 0 to 7, as in
the case of all-to-all broadcast). Unlike all-to-all broadcast, each message transferred
in the reduction operation has only one word, The size of the messages doss not
double in each step because the numbers are added instead of being concatenated.
Therefore, the total communication time for afl log p steps is

Treduction = (s +2,) 108 P (3.11)
Program 3.6 can be used to perform a sum of p numbers if my.msg, msg and

result are numbers (rather than messages), and the union operation (‘U") on line 9 is

replaced by addition. =

3.3 All-to-All Broodeast, Reduction, and Prefix Sums a5

R CIE R S

procedure ALL.TO_ALL BC_HCUBE(myid, my.msg, d, resulf)
begin
result = my msg;
fori:=0tod —1do
begin
partner = my_id XOR 2/
send resuit to partner,
receive msg from parmer;
result := result U msg;
endfor;
end ALL_TO_ALL_BC_HCUBE

,_.._.
—

Program 3.6 All-to-all broadcast on a d-dimensional hypercube.

Example 3.8 Prefix Sums on a Hypercube

Finding prefix sums is another important problem that can be solved by using
a commaunication pattern similar to that used in reduction. Given p numbers
Ao, Ry, -, My (One on each processor), the problem- is to compute the sums
5, = T o for all k between O and p — 1. For example, if the original sequence
of numbers is (0, 1, 2, 3, 4), then the sequence of prefix sums is {0, 1,3, 6. 10). Ini-
tially, i, resides on the processor labeled k, and at the end of the procedure, the same
processor holds s;. :

Figure 3.13 illustrates the prefix sums procedure for an eight-processor hyper-
cube. This figure is a modification of Figure 3.12. The medification is required to
accommodate the fact that in prefix sums the processor with label k uses information
from only the k-processor subset of those processors whose labels are less than or
equal to k. To accumulate the correct prefix sum, every processor maintains an
additional result buffer. This buffer is denoted by square brackets in Figure 3.13.
At the end of a communication step, the content of an incoming message is added
to the result buffer only if the message comes from a processor with a smaller label
than that of the recipient processor. The contents of the outgoing message (denoted
by parentheses in the figure) are updated with every incoming message, just as in
Example 3.7. For instance, after the first communication step, processors 0, 2, and
4 do not add the data received from processors i, 3, and 5 to their resuit buffers.
However, the contents of the outgoing messages for the next step are updated.

Since not all of the messages received by a processor contribute o its final
result, some of the messages it receives may be redundant. We have omitted these
steps of the standard atl-te-all broadcast communication pattern from Figure 3.13,
although the presence or absence of these messages does not affect the results of the

algorithm. Program 3.7 gives a procedure to solve the prefix sums problem on a
d-dimensional hypercube.]

86 Basic Comrmunication Cperations

%) 18] A 7 6 8] (6+7) [6+7]

{0+1) {0+1]

(a) Initial distribution of values

(b) Distribution of sums before second step

{4+546) [4+3+6] (A3+6+7) [4+54647]

[0+ .. +6] [0+ .. +7]

[O+142]

(443}

[4+5]

10+1] 0] o

{c) Distribution of sums before third step

t0]

(0+1
243)

2+3)

(d) Final distribution of prefix sums

Figure 3.13 Computing prefix sums on an sight-processor hypercube. At
sach processor, square brackets show the local prefix sum accumulated in a

buffer and parentheses enclose the contents of the cutgoing message buifer
far the next step.

3.3.2 Cut-Through Routing

For one-to-all broadcast, we obtain better algorithms for the ring and the mesh with CT
routing simply by mapping the hypercube algorithm onto them, This strategy does not yield
all-to-all broadcast algorithms for ring and mesh that are strictly better with CT routing than
with SF routing. The reason is that, unlike one-to-all broadcast, the hypercube procedure
for all-to-all broadcast cannot be mapped onto a ring or a mesh because it causes congestion
on the communication channels. For instance, Figure 3.14 shows the result of performing
the third step (Figure 3.12(c)) of the hypercube all-to-all broadcast procedure on aring, One
of the links of the ring is traversed by all four messages. Hence, passing these messages
with CT routing will not be any faster than performing this communication in four steps
using SF routing. However, with CT routing the ring and the mesh procedures for all-to-all

3.3 Allto-All Broadeast, Reduction, and Prefix Surmns a7

] procedure PREFIX_SUMS_HCUBE(myjd, my _number, d, result)
2 begin '
3 result == my number;
4, msg = result;

5. fori:=0tod —1do
6 begin

7 partner == my_id XOR 2;

8 send msg to partner,

g receive number from parner;

10. msg = msg + number,]

11 if (parmer < my_id) then result := resuir + number,
12. endfor, '

13, end PREFIX_SUMS_HCUBE

Program 3.7 Prefix sums on a d-dimensiona! hypercube.

broadeast shown in Figures 3.10 and 3.11 do nat require wraparound connections, provided
that communication channels are bidirectional. 'For large messages, the term associated
with #; is comparatively small and can be ignored. In this case, the communication time
for all-to-all broadcast with CT routing and bidirectional links is the same on a linear
array {miesh without wraparound connections) as with SF routing on a ring (mesh with
wraparound connections) {Problem 3.20). :

Section 3.3.1 shows that the term associated with tw in the expressions for the
conmnunication time of all-to-all broadeast is tym(p — 1) for all the architectures. This
term also serves as a lower bound for the communication time of all-to-all broadcast for

Contentior: for a single
chanrel by multiple
messages

Figure 3.14 Contention for a channel when the comrriunication step of Fig-
ure 3.12(c) for the hypercube is mapped onto a ring.

88 Basic Communication Operations

One-to-all personalized

M,
M,

M,) M, Mg,
@ @ . Single-node gather @ @ - @

Figure 3,15 Cne-t¢-all personalized communication and its dual—single-node gather.

parallel computers on which a processor can communicate on only one of its ports at a
time. This is because each processor receives at least m(p — 1) words of data, regardless
of the architecture or routing schems,

3.4 One-to-All Personalized
Communication

In one-to-all personalized communieation, a single processor sends a unigue message
of size m to every other processor. This operstion is also known as single-node scatter.
One-to-all personalized communication is different from one-to-all broadcast in that the
source processor starts with p unigue messages—one destined for each processor. Unlike
one-to-zll broadcast, one-to-all personalized communication does not involve any duplica-
tion of data. The related problem of k-to-all personalized communication is explored in
Problem 3.26. The dual of one-to-all personalized communication is single-node gather,
in which a single processor collects a unigue message from each other processor. The
procedure for single-node gather can be derived for any interconnection topology sim-
ply by reversing the direction and sequence of messages in the corresponding one-to-all
personalized communication algorithm. Again, a gather operation is different from an
accumulation operation in that it does not involve any combination or reduction of data.
Figure 3.15 illustrates the one-to-all personalized communication and single-node gather
operations. _

The complexity of one-to-all personalized communication on varicus architectures
is similar to that of all-to-all broadcast. In all-to-all broadcast, each processor- receives
m(p — 1) words, whereas, in one-to-all personatized connhunication, the source processor
transmits m words for each of the other p — 1 processors in the system. Therefore, as
in the case of all-to-all broadcast, rym(p — 1) is a lower bound on the communication
time of one-to-all personalized communication. This lower bound is independent of the
architecture or routing scheme. Because of its similarity to all-to-afl broadcast, we describe
this operation in detail for only the hypercube architecture. Algorithms for ring and mesh
topologies are left as an exercise (Problem 3.6},

3.4 One-to-All Personalized Communication 89

2}

{c) Distribution before the third step (d) Final distribution of messages

Figure 3.16 One-to-all personalized communication on an gight-processor
hypercube.

Hypercube

Figure 3.16 shows the communication steps for one-to-all personalized communicaticn

-0n ar: eight-processor hypercube. Initially, the source processor {processor 0) contains

all the messages. In the figure, messages are identified by the labels of their destination
processors. In the first communication step, the source transfers half of the messages to one
of its neighbors. In subsequent steps, each processor that has some data transfers haif of it
to & neighbor that has yet to receive any data. There is a total of log p communication steps
commesponding to the log p dimensions of the hypercube. Note that the communication
patler of one-to-all broadcast (Figure 3.5) and one-to-all personalized communication
(Figure 3.16) are identical. Only the size and the contents of messages are different.

All links of a p-processor hypercube along a certain dimension join two p/2-
processor subcubes (Section 2.4.1). As Figure 3.16 illustrates, in each communication
step of ome-to-all personalized communication, data flow from one subcube to another.
The data that a processor has before starting communication in a certain dimension are

90 Basic Communication Cperations

Mopa Myps Mpi pa Moo Mpy My, pa
Mo My, My M, M, M,
My, My, Mo All-to-all personalized M

P MD‘O MO,l .,
© O i OO

Figure 3.17 All-to-all personalized communication,

such that half of them need to be sent to a processor in the other subcube. In every step,
a communicating processor keeps half of its data, meant for the processors in its subcube,
and sends the other half to its neighbor in the other subcube. The time in which all data are
distributed to their respective destinations is

Torxe_m..ax’l_pers =1 IOEP + twm(p - 1). (3.12)

This time is the same as the time required for all-to-afl broadcast on a similar hypercube.
One-to-all personalized communication can be performed in time (t, + f,m)(p—1)ona

ring and in time 22:{,/p ~ 1) + t,m{p — 1) on a 2-D square mesh for both SF and CT
routing (Problem 3.6).

3.5 All-to-All Personalized
Communication

In all-to-all personalized communication, also known as fofal exchange, each processor
sends a distinct message of size m o every other processor. Each processor sends different
messages to different processors, unlike all-to-all broadeast, in which each processor sends
the same message to all other processors. Figure 3.17 illustrates the all-to-all personalized
communication operation. This operation is used in parallel fast Fourier transform, matrix
transpose, and some parallel database join operations.)
We now discuss the implementation of all-to-afl personalized communication on
parallel computers with ring, mesh, and hypercube interconnection networks. The comrmu-
nication patterns of all-to-all personalized communication are identical to those of all-to-all
broadcast on all three architectures. Only the size and the contents of messages are different.

3.5.1 Store-and-Forward Routing
Ring

Figure 3.18 shows the steps in all-to-all personalized communication on a six-processor
ring. To perform this operation, every processor sends p — 1 pieces of data, each of size m.
In the figure, these pieces of data are identified by pairs of integers of the form {7, 1}, where

3.5 Al-to-All Personcalized Communication 21

3

R T NS (5 R £

L e I
s, ,é({{a,o).i . 5“2'3"5((13} 5 i
2y B B3, PA2ALE T O s gy
t mE Bagy 1420 55 EXIN “;n |0‘4;,5€{5'4}”;“4-3“
N L) T Szons b ey
; : : {2 (LoD a :
v ¥ ¥ ¥ ¥ : : i : :
12 3 4 s

Figure 3.18 Ali-to-all personalized communication on a six-processor ring. The label
of each message is of the form {x, y}, where x is the label of the processor that originally
stored the message, and y is the label of the processor that is the finat destination of the

message. The label ({x1, yi}, {x2, y2}, ..., (x4, ¥a}) Indicates a message that is formed
by concatenating n individual messages,

i is the source of the message and j is its final destination. First, each processor sends all
pieces of data as one consolidated message of size m(p — 1) to one of its neighbors (all
Processors communicate in the same direction). Of the m(p — 1} words of data received
by a processor in this step, one m-word packet belongs to it. Therefore, each processor
extracts the information meant for it from the data received, and forwards the remainder
(p — 2 pieces of size m each) to the next processor. This process continues for p — 1 steps.
The size of the messages being transferred between processors decreases by m words in
each successive step. In every step, each processor adds to its collection one m-word packet
originating from a different processor. Hence, in p ~ 1 steps, every processor receives
the information from all other processors in the ensemble. Since the size of the messages

transferred in the i* step is m(p — /) on a ring of processors, the total time taken by this
operation is :

p—1
Talivra_a[l_pers = Z(Is + Iqu(}:’ - 1))

i=|
p—1
= 4p~-1+ Zifu}m
i=i

1
= (& + E?me)(P -1 (3.13)

92 Basic Cormnmunication Operations

TR 8.0),{83),18,61,

S —\ 8)i sansanea
e, T w2hesma
16,11.{64},16,7}, TLLI74L7.T),
[6:2}.16.5},{6,8)) T2L{7.51{7,8)

- SIS0 I5.315.61,
G} /’/ ¢ JEERINERINPE
Tessiissvisa Jaiiasiio] warosissy
{3.1L{34}(3.7), {11 1441.44.7),
{3.21.13,5}.(3.8 4.2} [4.5),14.8)) (1504,16.31,16,6}, (6.11{641,{6,7}, ({6.21.{6.5}.46.8],
IZOLIT3LIT6) (L1)(T4147.7h, [7.2147.30,07.8),
Lk (B1LI84MBT) 8251580
({OOL{03L{06), ((LOMI3LILGL (120L{23).426), : H i\
0,11 {0.43,40,7}, {LA{TAL{ET] (2.1}.{24}.12.7}, : NERINEYIN: f(32103s). :
(0.20,1030,108) {12L{L5N{I8L {221.{2.5)281) : RENERIR NIRRT
{44147, {4.51,148),
e : ENSRENE Dos2455) i
(a) Datz_l dl;tﬂbutmn at the (30L131361, | _ 530N (58D LN
beginning of first phase (400.{4.31(4.6), §<3j : 5_4_J ; : \5>§
{301,15.3115.60 : : : : '
P00, | b uoenios),
(CJRINTN UL REEIE :
; (LaL017L T REE I :
(10.04,410.31,60.6), | N R ER Y oRanes)
(LOL{L3L{T6 /N 27D PNI 1) @
120512304261 “dr SN

(b) Data distribution at the beginning of second phase

Figure 3.19 The distribution of messages at the beginning of each phase of al-to-
all personalized communication on a 3 x 3 mesh. At the end of the second phase,
processor i has messages {{0.i}, ... ,{8,i}), where 0 < { < 8. The groups of processors
communicating together in each phase are enclosed in dotted boundaries.

In the procedure we just described, all messages are sent in the same direction, If
half of the messages are sent in one direction and the remaining half are sent in the other
direction, then the term associated with #,, can be reduced by a factor of two (Problem 3.3).

For the sake of simplicity, we ignore this constant-factor improvement in the remainder of
the section.

Mesh

In ali-to-all personalized communication on a VP % /P mesh, each pracessor Airst groups
its p messages according to the columns of their destination processors, Figure 3.19 shows
a3 x 3 mesh, in which every processor initially has nine m-word messages—one meant
for each processor. Each processor assembles its data into three groups of three messages
each (in general, . /7 groups of /P miessages each). The first group contains the messages

3.5 Al-ro-All Personalized Communication 23

destined for processors labeled 0, 3, and 6; the second group contains the messages for
processors labeled 1, 4, and 7; and the last group has messages for processors labeled 2, 5,
and 8.

After the messages are grouped, ail-to-all personalized communication is performed
independently in each row with clustered messages of size m./p. One cluster contains
the information for all ,/p processors of a particular column. Figure 3.19(b) shows the
distribution of data among the processors at the end of this phase of communication.
Assuming a square mesh, we can compute the fime spent in this phase by substituting ,/p
for the number of processors, and m./p for the message size in Equation 3.13. The result
of this substitution is (¢ -+ 2,mp/2) (/P — 1).

Before the second communication phase, the messages in each processor are sorted
again, this time according to the rows of their destination processors; then communication
similar to the first phase takes place in afl the columns of the mesh. By the end of this phase,
each processor receives a message from every other processor. The time spent in this phase
is the same as that in the first phase. Therefore, the total time for all-to-all personalized
communication of messages of size /n on a p-processor two-dimensional square mesh is

TaH_w_aH_per: = (24 + Ime)(«/ﬁ - 1. (3.14}

The expression for the communication time of all-to-ail personalized communication
in Equation 3.14 does not take into account the time required for the local rearrangement
of data (that is, serting the messages by rows or columns). Assuming that initially the data
is ready for the first communication phase, the second communication phasé requires the
rearrangement of mp words of data. If 1, is the time to perform a read and a write operation
on a single word of data in a processor’s local memory, then the total time spent in data
rearrangement by a processor during the entire procedure is £mp (Problem 3.27). This
lime is much smaller than the tixoe spent by each processor in communication.

Hypercube

The all-to-all personalized communication algorithm for a p-processor hypercube with SF
routing is simply an extension of the two-dimensional mesh algorithm to log p dimensions.
Figure 3.20 shows the communication steps required to perform this operation on a three-
dimensional hypercube. As shown in the figure, communication takes place in log p steps.
Pairs of processors exchange data in a different dimension in each step. Recall that in a p-
processor hypercube, a set of p/2 links in the same dimension connects two subcubes of p/2
processors each (Section 2.4,1). At any stage in all-to-all personalized communication,
every processor holds p packets of size m each. While communicating in a particular
ditension, every processor sends p/2 of these packets (conso]jdated as one message). The
destinations of these packets are the processors of the other subcube connected by the links
in current dimension. Thus, mp/2 words of data are exchanged along the bidirectional
channels in each of the log p iterations. The resulting total communication fime is

1
Tali..:o.dailﬁpers - {Is -+ :)'fwmp) 105 - (315)

@4 Basic Communication Operations

(16.01,16.2},[64).16.6}, (16,11{6,3).{6.51.16.7},
(16,0} ... (6,71} (7.0} . (1,71 {7.0L17.21{74).(76}) L3507

=

Ualhi43),
14.5).{4.7},
[(5.1,15,3},
15.51.05,71)

(8.0} .. 1073} AL} (L7
{0111031(05110,7H

{a) Initial distribution of messages

(b) Distribution before the second step

166144211450, (T3LIL(53145),
: 520560 {631,167 1.{4.3).{4.7) (10,6} ... [7.6},

07} .. {77

(19,2}
{41061},
{4.51,{6.5),
[ENSREATE
{8.50.{7.50 (10.5) .. (75D
(10,0},{0.4),{2,01,(24), (11.13{1,53,{3.10.(3,5]. H0,0Y .. (7.0 U0} {71
{LOL{14),{3.05.(34)) {O.LL{e5)1218,{2.5h

{c) Disuibution before the third step {d) Final distribution of messages

Figure 3.20 All-to-all personalized communication on a three-dimensional hypercube
with SF routing.

In the preceding procedure, a processor must rearrange its messages locally before
each of the log p communication steps. This is necessary to make sure that all p/2 messages
destined for the same processor in a communication slep occupy contiguous memory
locations so that they can be transmitted as a single consolidated message. Before each of
the log p communication steps, a processor rearranges mp words of data (Problem 3.28).
Hence, a total of #,mplog p time is spent hy each processor in local rearrangement of
data during the entire procedure. Here 7, is the time needed to perform a read and a write
operation on a single word of data in a processor’s local memory, For most practical

3.5 All-to-All Personalized Communication 95

computers, - is much smaller that ,,; hence, the time to perform an afl-to-all personalized
communication is dominated by the communication time.

3.5.2 Cut-Through Routing
Ring and Mesh

Recall the all-to-all personalized communication procedure described in Section 3.5.1 for
a p-processor ring. We know that each processor sends m(p — 1) words of data because it
has an m-word packet for every other processor. Assume that‘all messages are sent either
clockwise or counterclockwise. The average distance that an m-word packet travels is
(Efﬂ"lli)/ (p — 1), which is equal to p/2. Since there are p processors, each performing the
same type of communication, the total traffic (the total number of data words transferred
between directly-connected processors) on the network is m(p — 13 % p/2 % p. The total
number of communication channels in the network to share this load is p. Hence, the
communication tire for this operation is at least (z,, x m(p ~ 1)p?/2)/ p, which is equal
to fym{p — 1)p/2. Ignoring the message startup time #,, this is exactly the time taken
by the ring procedure. Hence, this procedure cannot be improved by using CT routing,
Similarly, regardless of the routing mechanism, the mesh procedure of Section 3.3.1 is
optimal within a small constant factor (Problem 3.12). However, with CT routing, the
ring and mesh procedures for al-to-all personalized communication shown in Figures 3.18
and 3.19 do not require wraparound connections, provided that communication channels are
bidirectional. Thus, with CT routing, the times for all-to-all personalized communication
on a linear array and a mesh without wraparound are the same as those with SF routing on
aring and a mesh with wraparound, respectively.

'Hypercube

Interestingly, using CT (instead of SF) routing does improve the performance of all-to-
all personalized communication on a hypercube. The average distance between any two
processors on a hypercube is (log p}/2; hence, the total traffic is m(p — 1) x (log Y2 % p.
Since there is a total of (p log p)}/2 links in the hypercube network, the lower bound on the

" all-to-all personalized communication time is

Tlawer_bound — twm(p = D(plog P)/2
all_ro_all_pers (P].Dg P)/2
= tym{p—1).

“This is smaller than the communication time of (s + tymp/2)log p for the hypercube
brocedure described in Section 3.5.1.

An all-to-all personalized communication effectively results in all pairs of processors
exchanging some data. If cut-through routing is available on a hypercube; then the best
Way to perform this exchange is to have every pair of processors communicate dircetly

© with each other. Thus, each processor simply performs p — 1 communication steps,

ot ’ asif - i il [S ——

96 Basic Cormmunication Cperations

{g)

Figure 3.21 Seven steps in ail-to-all personalized communication on an eight-processor
hypercube with CT routing.

35 Al-fo-All Personglized Communication o7

procedure ALL_TO_ALL PFRSONAL(d, my.id)
begin

fori:=1t02¢ —1do

begin

partner :=my_id XOR i,
send My 4, parner 10 partner,
receive Mparinermy_a from partner,
endfor;
end ALL_TO_ALL PERSONAL

R RSP RIS

Program 3.8 A procedure to perform all-to-all perscnalized communication on a 4-

dimensional hypercube with CT routing. The message M; ; initially resides on processor
i and is destined for processor J.

exchanging m words of data with a different processor in every step. A processor must
choose its communication partner in each step so that the hypercube links do not suffer
congestion. Figure 3.21 shows one such congestion-free schedule for pairwise exchange
of data it a three-dimensicnal kypercube. As the figure shows, in the % communication
step, processor ¢ exchanges data with processor (/ XOR). For example, in part (a) of the
figure (step 1), the labels of communicating partners differ in the least significant bit. In
part (g) (step 7), the labels of communicating partners differ in all the bits, as the binary
representation of seven is 111. In this figure, all the paths in every communication siep
are congestion-{ree, and none of the bidirectional links carry more than one message i the
same direction. This is true in general for a hypercube of any dimension. If the messages
are routed appropriately, a congestion-free schedule exists for the p - 1 communication
steps of afl-to-all personalized communication on a p-processor hypercube.

Recall from Section 2.4.1 that a message traveling from processor i to processer
J on a hypercube must pass through ar least / links, where ! is the Hamuming distance
between i and j (that is, the number of nonzero bits in the binary representation of (; XOR
7). A message traveling from processor / to processor j traverses links in [dimensions

. (corresponding to the nonzero bits in the binary representation of (7 XOR j)). Although the

message can follow one of the several paths of length { that exist between ; and J (assuming
[= 1), adistinet path is obtained by sorting the dimensions along which the message travels
in ascending order. According to this strategy, the first link is chosen in the dimension

- cortesponding to the least significant nonzero bit of (i XOR J), and so on.. This routing

scheme is known as aseending routing or E-cube routing. A more detailed description
of E-cube routing can be found in Section 2.6. By using E-cube routing, and by choosing
communication pairs according to Program 3.8, a communication time of ¢, + tym -+ Byl
is guaranteed for a message transter between processor / and processor j, where [is the
Haroming distance between / and j. For a given i, on a p-processor hypercube, the sum of

98 Basic Communication Operations

all/ for 0 < j < pis (plog p)/2. The total communication time for the entire operation is

1
Ta.!l_mualt_pers = +mp—1+ thplog P (3.16)

A comparison of Equations 3.15 and 3.16 shows the term associated with 1 is higher
for the CT routing procedure, while the term associated with #,, is higher for the SF routing
procedure by a factor of almost (log p}/2. Furthermore, CT routing gbviates the need for
local rearrangement of messages required in the SF routing procedure. For small messages,
the startup time may dominate, and the procedure of Section 3.5.1 may still be useful.

3.6 Circular Shift

A permutation is a simuitaneous, one-to-one data redistribution operation in which each
processor sends a packet of m words to a unique processor. In this section, we discuss
a particular type of permutation cailed circular shift. We define a eircular g-shift as the
operation in which processor i sends a data packet to processor (i + g) mod p in a p-
processor ensemble (0 < g < p). The shift operation finds application in some matrix
computations and in string and image pattern matching,

Since the implementation of a circular g-shift is fairly intuitive on a ring (it can be
performed by.min{g, p — ¢ Ineighbor-to-neighbor communications in one direction), we
discuss this operation in detail only on a mesh and a hypercube.

3.6.1 Store-and-Forward Routing
Mesh

If the processors of the mesh have row-major labels, a circelar g-shift can be performed on
a p-processor square wraparound mesh in two stages. First, the entire set of data is shifted
simultaneously by (g mod ./p) steps along the rows. Then it is shifted by [¢/./P] steps
along the columns. During the circular row shifts, some of the data traverse the wraparound
connection from the highest to the lowest labeled processors of the rows. All such data
packets must shift an additional step forward along the columns o compensate for the /7
distance that they lost while traversing the backward edge in their respective rows.

Figure 3.22 shows a circular 5-shift on a 16-processor mesh. It requires one row
shift, a compensatory column shift, and finally one column shift, In practice, we can chose
the direction of the shifts in both the rows and the columns to minimize the number of steps
in a circular shift. For instance, a 3-shift on a 4 x 4 mesh can be performed by a single
backward row shift. Using this strategy, the number of unit shifts in a direction cannot
exceed L,/p/21.

 Taking into account the compensating column shift for some packets, the total time

for any circular g-shift on a p-processor mesh using packets of size m has an upper bound
of '

s+ le)(2L§J + 1.

Tc."rcutar._yhiff

3.6 Circular Shift 99

{15) (13 as
12 L 14 = 15
- .

-‘ iy

()
3
‘ @ @ (0
(i —
:m)
{0
!

{)
<4:“) {S {6: (5.) { D(;)
A
i 3

O O e 3

(b) Step to compensate for backward row shifts

(a) Initial data distribution and the
first communication step

(11} (12) &l (8 9) {10
gV 13 . 5
o e

v 4

3 3

i : 3 “ 5) (6

8/‘\ (7 {9‘\ (8} SJ (9) 60(. -Q.l)jl

b 4
S N E R B EY :

: Yy : (15) 0 (1} 2
lo'*t'g- PR g G e G P

; TR TR L
3 : &

: : 13 : :

; 0\;“5)\;’ /_\ ™ | 111 2 -~ 3 _{14)
Ot D O O O,

g e -

(¢) Column shifts in the third cormmunication step (d) Final distribution of the data

Figure 3.22 The communication steps in a circular 5-shift on a 4 x 4 mesh,

Hypercube

In developing a hypercube algorithen for the shift operation, we map a ring with 2¢ proces-
sors onto a ¢-dimensional hypercube. We do this by assigning processor { of the ring 1o
Processor j of the hypercube such that j is the d-bit binary reflected Gray code (RGC) of
{. Figure 323 iilustrates this mapping for eight processors. A property of this mapping is
that any two processors at a distance of 2 on the ring are separated by exactly two links on

100 Basic Communication Operations

First communication step of the 4-shift Second communication step of the 4-shift

(a) The first phase {a 4-shift)

(c) Final data distribution after the 5-shift

(b) The second phase {a 1-shift}

Figure 3.23 The mapping of an eight-processor ring onte a three-dimensional
hypercube to perform a circular 5-shift as a combination of a 4-shift and a 1-shift.

the hypercube. An exception is { = 0 (that is, directly-connected processors on the ring)
when only one hypercube link separates the two processors.

To perform a g-shift, we expand g as a sum of distinct powers of two. The number
of terms in the sum is the same as the number of ones in the binary representation of g.
For ethple, the number five can be expressed as 22 + 29, These two terms carrespond to
bit positions 0 and 2 in the binary representation of five, which is 101, If g is the sum of 5
distinct powers of two, then the circular g-shift on a hypercube is performed in s phases.

In each phase of communication, all data packets move closer to their respective
destinations by short cutting the ring (mapped onto the hypercube) in leaps of the powers
of two. For example, as Figure 3.23 shows, a 5-shift is performed by a d-shift followed by
a 1-shift. The numbesx of communication phases in a g-shift is exactly equal to the number
of ones in the binary representation of ¢. Each phase consists of two communication steps,

3.7 Faster Methods for Some Communication Cperations 101

except the 1-shift, which, if required (that is, if the least significant bit of g is one}, consists
of a single step. For example, in a 5-shift, the first phase of a 4-shift (Figure 3.23(a))
consists of two steps and the second phase of a 1-shift (Figure 3.23(b)) consists of one step,
Thus, the total number of steps for any ¢ ina p-pracessar hypercube is at most 2log p — 1.

All communications in a given time step are congestion-free. This is ensured by
the property of the ring mapping that all processors whose mutual distance on the ring is
a power of two are arranged in disjoint subrings on the hypercube. Thus, all processors
can [reely communicate in a circular fashion in their respective subrings. This is shown in
Figure 3.23(a), in which processors labeled 0, 3, 4, and 7 form one subring and processors
labeled 1, 2., 5, and 6 form another subring.

The upper bound on the total comrmunication time for any shift of m-word packets
on a p-processor hypercube is

Tcr‘rcuiar_shffr = (t + tym (2 ZOgP - . G

We can reduce this upper bound to (1, + twm) log p by performing both forward
and backward shifts (Problem 3.29). For example, on eight processors, a 6-shift can be

performed by a single backward 2-shift instead of a forward 4-shift followed by a forward
2-shift.

3.6.2 Cut-Through Routing

Cut-through routing does not aid a shift operation on a ring or a mesh due to congestion on
communication links. On a hypercube, however, CT routing can improve the time of a shift
operation by almost a factor of log p for large messages. To perform a circular g-shift on
hypercube with CT routing, the standard hypercube labeling of processors is nsed (instead
of the RGC labeling used with SF routing). Each processor directly sends the data to be
shifted to its destination processor. If the E-cube routing described in Section 3.3.2 is used,
then each message has a congestion-free path (Problem 3.30). Figure 3.24 illustrates the
non-conflicting paths of all the messages in circular g-shift operations for 1 < ¢ < 8 onan
eight-processor hypercube. In a circular gq-shift on a p-processor hypercube, the longest
path contains log p — v {g) links, where ¥ (q) is the highest integer j such that ¢ is divisible
by 27 (Problem 3.31). Thus, the total communication time for messages of length m is

I}:Ermiar;‘ﬁifz =l +tym -+ f{log p — ¥ . (3.18)

For large messages, this time is approximately equal to ¢, + £,,m.

3.7 Faster Methods for Some
Communication Operations

So far in this chapter, we have derived procedures for various communication operations

and their communication times under certain assumptions. We now briefly discuss the
impact of relaxing these assumplions on some of the communication operations.

102

{d) 4-shift {f) 6-shift

(g) 7-shift

Figure 3.24 Circular g-shifts on an 8-processor hypercube for 1 < ¢ < 8.

3.7.1 Routing Messages in Parts

In the procedures described in Sections 3.1-3.6, we assumed that an entire m-word packet
of data travels between the source and the destination processors along the same path, If we
split a message into smaller parts and then route these parts through different paths, we may
be able to utilize the communication network better. For exampte, consider the transfer of a
message of size m between two processors of a p-processor hypercube. Section 3.1 shows
that this communication takes at most 7, + f,,m log p time with SF routing. One of the
properties of a p-processor hypercube is that there are log p distinct paths between any pair

TR R T R

B R S e e S S R i e T e Sk

3.7 Faster Methods for Some Communication Operations 103

e T6 %

Figure 3.25 The six time-steps in one-to-all broadcast on an seight-pracessor hyper-

cube with SF routing when the message is splitinto three parts that are routed separately
on three different spanning binomiat trees,

o:f processors. If the labels of two processors differ in i bits, then / of these pafhs contain [
links each, and the remaining (log p — I) paths contain { + 2 links each (Problem 2.8). If the
message is split at the source into log p parts and each part is senf to the destination along
a separate path {starting with the longer paths first), then the destination can recetve the
entire data in at most 2 log p communication steps involving messages of size m /log p. In
log p steps, the source sends the smaller packets out on all the log p paths. The last packet
takes at most log p steps to reach the destination. That way, the communication time is
at most 2{¢; log p + t,m). This time reflects an improvement by a factor of B(log p) in
tl‘le &y term over the method described in Section 3.1. Although, the #; term increases by a
similar factor, for sufficiently large messages, this method could still be faster than sending
the entire message along the same path.
Now consider one-to-all broadeast on a hypercube. We first describe a property of
the hypercube network that is useful for performing this operation. A spanning free of a
_ graph is defined as a tree whose set of nodes or vertices is identical to that of the graph. A
one-node binomial tree is the node itself. A p-node binomial tree is constructed from two
P/2-node trees by adding an edge from the root of one tree to the root of the second tree—
making the second tree a subtree of the first, It is a property of a p-proccsso'r hypercube
that a p-node binomial tree can be embedded into it with each node of the free mapped

104 Basic Communication Operations

onto a distinct processor. Thus, this binomial tree is also a spanning tree of the hypercube.,
Moreover, it is possible to construct log p different spanning binomial trees rooted at cach
of the log p neighbors of any given processor in & p-processor hypercube. !

For performing one-to-all broadcast, we consider a hypothetical sparming binomial
tree rooted at each of the neighbers of the source of the broadcast. Figure 3.25 shows
such spanning irees for a three-dimensional hypercube with processor 0 as the source,
These three trees are rooted at the three neighbors of processor 0—processors 1, 2, and 4.
Moreover, these irees are oriented so that the source itself is the smallest subiree (ontaining
a single node) of each binomial tree. In order to be broadeast, the m-word message is first
splitinto log p parts at the source processor. The source sends one of these parts to the root
of each spanning tree in three consecutive steps. Each processor {(in¢luding the root) of
every spanning tree stores any message that it receives, and sends it out to afl of its subirees
in the order of decreasing sizes of the subirees. Figure 3.25 shows that there is never a
conflict between two messages traveling in the same direction on any channel in the same
time step.

The source sends out the log p messages sequentiaily. It takes another log p steps
for the message sent to the last spanning tree to percolate down to all the leaves of the tree.
Since all processors He on each spanning tree (by definition) and each tree carries one of
the log p parts of the original message, all the processors receive the complete message
by the end of the procedure. With individual messages of size m /log p, the time taken to
complete ali the 2 log p steps of the broadcast is

Toneroat = (t: + tym/flog p) x 210g r
20t log p + tym). (3.19)

fl

Note that the ,, term is reduced by a factor of {log p)/2 over the algorithm presented in
Section 3.2, but the 7, term has doubled.

Ins this section, we discussed how the communication time of ene-to-all broadeast can
be reduced by splitting a message into smaller pares that are routed independentty. Another
algorithm to perform one-to-all broadcast on a hypercube in time 2(z; log p + f,,m) is given
in Problem 3.24. However, algorithis like the one presented here and in Problem 3.24 are
usually difficult to program and incur additional overhead in breaking, routing, queuing,
and reassembling the messages. Moreover, the original message mustcontajn at least log p
words for successful splitting. In practice, messages need to be even longer in order to
offset the doubled startup cost. Hence, the smarter broadcast algorithms are useful only if
the message size if sufficiently large.

3.7.2 All-Port Communication

In a parallel architecture, a single pracessor may have multipie communication ports with
links to other processors in the ensemble. For example, each processor in a two-dimensional
wraparound mesh has four ports, and each processor in a d-dimensional hypercube has o
ports. In this book, we generally assume what is known as the one-port communication

3.7 Foster Methods for Some Communication Operations 105

model. In one-port communication, a pracessor can send data on only one of its ports

at a time. Similarly, a processor can receive data on only one port at a time, However,
a processor can send and a receive data simultaneous!
separaie ports. In contrast to the one-port model, a
permits simultaneous communication on all the channe

y—either on the same port or on
n all-port communication model
ls connected to a processor.

On a p-processor hypercube with all-port communication, the coefficients of 1, in
the expressions for the communication fimes of one-to-ali and all-to-all broadeas: and
personalized communication are all smaller than their one-port counterparts by a factor of

log p. Since the number of channels per pracessor for a ring or a mesh is constant, all-port
commanication does not provide any as j

ymptotic improvement in communication time on
these architectures. ’

Despite the apparent speedup, the ail-port communication model has cértain limita-
tions. For instance, not only is it difficult to program, but it requires that the rhessages are
large enough to be split efficiently among different channels. n several parallei algorithms,
an increafse in the size of messages means a corresponding increase in the gi‘anularity of
.computatlon at the processors. When the processors are working with large daa sers, the
mt'erprocessor comrmunication time is deminated by the computation time if the compu-
tational complexity of the algorithm is higher than the communication complexity. For
§xample, in the case of matrix multiplication, there are 53 computations for #* words of data
transferred among the processors. [f the communication time is a smail fraction of the total
parallel run time, then mproving the communication by using sophisticated techniques is
nat very advantageous in terms of the overall run time of the parallel algorithm,

Even with today’s technology, the one-port communication model is quite relevant,
In some state-of-the-art parailel computers such as the CM-5, the all-port model is not
applicable at all. The CM-5 can execute most one-port hypercube algoritbnis without a
substantial extra communication penalty. Unlike a real hypercube, each CM-5 processor
has only one communication port because its interconnection network is a pseudo fat tree.
In any case, even if multiple ports are available, all-port communication can be effective

. only if data can be fetched and stored in memory at a rate sufficient to sustain all the
- barallel commanication, For example, to utilize all-

port communication effectively on a
P-processor hypercube, the memory bandwidth must be greater than the communication

" bandwidth of a single channel by a factor of a least log p: that is, the memory bandwidth

- Must increase with the number of Processors to support simultaneous communication on
all ports.

3.7.3 Special Hardware for Global Operations

In addition to the standard data network, some parallel computers have a fast control

-Betwork that can perform certain global operations in a small constant time. One such

Operation commonly itmplemented using special hardware is reduction (Example 3.7). A
Teduction operation starts with a different value on each processor and ends with a single

value on each processor. The final value is the result of applying an associative operator

106 Baosic Communication Operations

Table 3.1 Summary of communrication times of various operations discussed .in‘ Bec-
tions 3.2-3.5 on different architectures with one-port communication anld cT routm.g. The
message size for each operation is m and the number of processors is p. lThe time for
one-to-all broadeast on the hypercube is not optimal, and, as shown in Section 3.?.1 and
Problem 3.24, can be improved to 2{; log p + t,m). In the hypercube expression for
circular g-shift, y (g) is the highest integer j such that ¢ is divisible by 2/,

Ring 2-D Mesh Hypercube
Operation {wraparound, square)

One-to-all broadcast
{; +-t,m)logp (5 + 1,m) log p {t: + tym) log p
+aip—1) +26{ /P~ 1)

Ail-to-all broadcast

(rs +‘wm)(P - 1) zrs(ﬁ— 1) + twm(p -]) ts 305!? + fwm(p - 1}

One-to-all personalized
s + tam)(p — 1) (/P - D+mmip-1 slogp+t,mip—1)

All-to-all personalized
(s + twmp/2)(p — 1) (2 + tymp) (/P — 1) (ts +tum)(p — 13
+{t/2)plog p
Circuiar g-shift
{t + tym)| p/2] i+ r.,,m)(ZI_ﬁ/ZJ + 1) 7t tym
+(ogp — v (g)

(such as addition, maximum, minimum, or a logical bitwise operator) on all the starting
values. _

A fast, (almost) constant time reduction, while providing a natural way to impiement
accumulation, can also be used ta perform broadeasts. If the source starts with a.datum to
be broadcast, and every other processor starts with a zero, a reduction with addition as the
associative operator results in the distribution of the source’s datum to alll the processors.
If 1, is the time to perform one reduction, then the control network prf)wdes a fast means
to implement one-to-all broadcast of & message of size m in f.m tl.me, as opposed to
{t; + r,m) log p time using the hypercube algorithm described in Section 3.2.

3.8 Summary

Table 3.1 summarizes the communication times for the operations discussed in this
chapter on ring, mesh, and hypercube architectures with cut-through routing. ‘Most of the
entries in the table are valid for store-and-forward routing as well. The exceptions arc:. 1)
the comimunication times of one-to-all broadcast on 2 ring and a mesh with SF rouiing,

SRR

3.9 Bibliographic Remarks 107

which are (¢ + r,m)[p/27 and 20t + tym) [/P/2], respectively; and (2) the time taken
by all-to-all personalized communication operation on 2 hypercube with SF routing, which
is {t; + twmp/2) log p. The time for one-to-all broadcast on the hypercube is not
as we saw in Section 3.7.1, it can be improved ta 2(z; log p + Lt}

All communicatien patterns discussed in this chapter are very regnlar and predictable.
Therefore, we have been able to describe their algorithms in terms of discrete time Steps,
avoiding temporal and spatial (on the channels) overlap of messages. Asa resuli, all the
algorithms described here will work as expected on SIMD computers. However, since it
is theoretically impossible to impose any synchrony on the processors of an MIMD com-
puter, the communication times may deviate somewhat from their theoretical expressions,
especially if communication and computation are interspersed.

optimal;

3.9 Bibliographic Remarks

In this chapter, we studied a variety of data communication operations for the ring, mesh. and
hypercube interconnection topologies. Saad and Schultz [SS89b] discuss implementation
issues for these operations on these and other architecture.

s, such as shared-memory and a
swiich or bus interconnect.

The hypercube algorithm for a certain communication operation is often the best
algorithm for other less-connected architectures too, if they support cut-through routing.
Due to the versatility of the hypercube architecture and the wide applicability of its algo-
rithms, extensive work has been done on implementing various communication operations
on hypercubes [BOS*91, BR9O, BTR9, FE86, JH89, Joh%0, MdV87, RSSO, 5580%a, SWa7].
The properties of a hypercube network that are used in deriving the algorithms for various
communication operations on it are described by Saad and Schultz [SS88].

The all-to-all personalized communication problem in particular has been ana-
lyzed for the hypercube architecture by Boppana and Raghavendra [BR9G], Johnsson and
Ho {TH91], Seide] [Si89], and Take [Tak87]. Ascending or E-cube routing that guarantees
congestion-free communication in Program 3.8 for all-to-al] personalized communication
is described by Nugent [Nug88], and is used in Intel’s iPSC/2 hypercube.

The reduction and the prefix sums aigorithms of Examples 3.7 and 3.8 are described
by Ranka and Sahni [R590]. Our discussion of the circular shift operation is adapied from
Bertsekas and Tsitsiklis [BTS89].

The hypercube algorithm for one-c-all broadcast using spanning binomial trees
is described by Bertsekas and Tsitsiklis {(BT89] and Johnsson and o [JH89]. In the
Spanning tres algorithm described in Section 3.7.1, we split the m-word message to be
broadcast into log p parts of size m/log p for ease of presenting the algorithm. Johnsson
and Ho [JH89] show that the optimal size of the parts is [(Vtm]t,Tog p)]. In this case,
the number of messages may be greater than log p. These smaller messages are sent from
the root of the spanning binomial tree to its log p subtrees in a circular fashion. With
this strategy, one-to-all broadcast On a p-processor hypercubé can be performed in time

5108 p + rum + 21, [(/17y Tog)] log p.

108 Basic Communication Operations

13

Algorithms using the all-port communication model have been described for a vari-
ety of communication operations on the hypercube architecture by Bertsekas and Tsitsik-
lis {BT893, Johnsson and Ho [JH89], Ho and Johnsson [HI87], Saad and Schultz [S589%aj,
and Stout and Wagar [SW87]. Johnsson and Ho [JH89] show that on a p-processor
hypercube with all-port communication, the coefficients of #, in the expressions for the
communicafion fimes of one-to-all and all-ic-all broadcast and personalized communi-
cation are all smaller than their one-port counterparts by a factor of log p. Gupta and
Kumar [GK91] show that all-port communication may not improve the scalability of an
algorithm on a paraliel architecture over one-port communication.

The network architzcture of CM-5 that supports a fast reduction operation is described
by Leiserson et al. [L*92]. The same operation is discussed by Stolfo and Miranker [SM86]
in the context of the DADO parallel computer. Besides reduction, paraliel computers like the
CM-5 and DADO also support other related operations such as prefix sums. A generalized
form of prefix sums, often referred to as scan, has been used by some researchers as a basic
primitive in data-parallel programming. Blelloch [Bie90] define a scan vector model, and
describes how a wide variety of paraliel programs can be expressed in terms of the scan
primitive and its variations.

The elementary operations described in this chapter are not the only ones used in
parallel appiications. A variety of other useful operations for parallel computers have been
described in literatre, including selection [AkI89], pointer jumping [HS86, Jaj92], BPC
permutations [Joh90, RS90], fetch-and-op [GGK V&3], packing [Lev87, SchB0], bit reversal
[Loa92], and keyed-scan or multi-prefix [Bie®0, Ran89].

Sometimes data communication does not follow any predefined pﬁttern, but is arbi-
trary, depending on the application. In such cases, a simplistic approach of routing the
messages along the shortest data paths between their respective sources and destinations
leads to contention and imbalanced communication. Leighton, Maggs, and Rao [LMRE8],
Valiant [Val82], and Valiant and Brebner [VB81] discuss efficient routing methods for
arbitrary permutations of messages.

Problems

3.1 (One-to-all broadeast on a tree) Show that one-to-all broadcast of an m-word
message can be performed in time {7, + tywm + 1x(log p + 1)) log p on a balanced
binary tree on which each of the p leaves is a processor and each intermediate node
is a switching node. Assume that a message takes time #; - t,m + £,/ to traverse a
path with ! — 1 switching nodes.

3.2 Consider a linear array (without a wraparound connection) of p processors labeled
from 0 to p — 1. The average distance (in terms of the number of links) from
processor 0 to any of the other p — 1 processors is (El.f:,li)/(p - 1), which is equal
to p/2. Derive an expression for the average distance to any of the (four) corner
processors {rom all the other processors in a /p x /P mesh without wraparound

33

34

35

3.6

3.7

3.8

Proklems 109

connections. What is the average distance of a processor in a d-dimensional
hypercube from the other processors?

Describe a procedure for all-to-all personalized communication of m-word mes-
sages on a ring of p processors with SF routing such that the procedure takes
rsédp — 1) + t,mp? /4 time if p is even and te(p — 1)+ 2,mip® — 1)/4 time if p is
odd.

(All-to-all broadcast on a tree) Given a balanced binary tree as shown in Figure 3.8,
describe a procedure to perform all-to-all broadeast that takes (7, + twmp/2)log p
time for m-word messages on p processors. Assume that only the leaves of the
tree contain processors, and that an exchange of two m-word messages between

~ any two processors connected by bidirectional channels takes t; + fymk time if the

communication channel (or a part of it) is shared by k simultancous messzges.

Derive an optimal algorithm along the lines of Example 3.7 for adding p numbers
on a p-processor mesh and distributing the sum to al] the processors. What is its
paralle]l run time? Show that your algorithm is optimal.

(One-to-all personalized communication on a ring and a mesh) Give the pro-
cedures and their communication times for one-to-all personalized communication
of m-word messages on p processors for the ring and the mesh architectures,
Hint: For the mesh, the algorithm proceeds in two phases as usval and starts with
the source distributing pieces of m./p words among the ,/p processars in its row
such that each of these processors receives the data meant for a1l the /P processors
in its column,

Section 3.2.1 shows informally that the hypercube algorithm described in that
section for one-to-all broadeast is optimal if an entire message is routed along the
same path. Why can’t the same argument be applied to the hypercube algerithm
for all-to-all personatized commurication described in Section 3517

{Multinode accumulation} The dual of afl-to-all broadcast is multinode accumu-
latien, in which each processor is the destination of a single-node accumulation.
For example, consider the scenario where P processors have a vector of p elements
each, and the i processor (for all i such that 0 < i < P) gets the sum of the i

- elements of all the vectors. Describe an algorithm to perform multinode accumu-

3.9

lation on a hypercube with addition as the associative operator. If edch message
contains m words and 1,44 is the time to perform one addition, how much time does
your algorithm take (in terms of m, P tadds ts and 1,37

Hint: In all-to-all broadcast, each processor starts with a single message and
coliects p such messages by the end of the operation. In multinode accumulation,
each processor starts with a p distinct messages (one meant for each processor) but
ends up with a single message.

Parts (c), (e}, and (f) of Figure 3.21 show that for any processor:in a three-
dimensional kypercube, there are exactly three processors whose shortest distance
from the processor is two links. Derive an exact expression for the number of

