Welcome to CSE 506

Introduction & Review

Don Porter
Why Grad OS?

• Primary Goal: Demystify how computers work
An example progression

• Undergrad OS:
 – High-level understanding of paging
 – Theoretical issues like fragmentation

• Grad OS (506): Build a pager
 – Solid understanding of how paging SW + HW work

• Advanced Grad OS (624): Read novel research papers
 – Do creative things with paging: virtualization, security, etc
506: Learn by doing

• You will write major chunks of your own OS
 – Memory management, context switching, scheduler, file system, IPC, network driver, shell, etc.
 – Linux scheduler:
 • Difficult to understand just by reading source
 • Small modifications require first understanding the code
 • Impossible to replace/reimplement
 – No substitute for building it yourself!
A logical view of hardware

- CPU(s)
- RAM
- PCI-X Bus
- North Bridge (Fast devices: e.g., GPU)
- BIOS
- SATA
- PCI Bus
- South Bridge (“Slow” Devices: e.g., Disk, USB, Most network)
Fewer Bridges

• Newer system organizations are moving more devices to the North bridge, and consolidating more things on the CPU itself.
A logical view of the OS

- Binary Formats
- Memory Allocators
- Threads
- System Calls
- RCU
- File System
- Networking
- Sync
- Memory Management
- Device Drivers
- CPU Scheduler
- Interrupts
- Disk
- Net
- Consistency
- Hardware
- User
- Kernel
Labs, cont.

• This course is **coding intensive**
 – You should know C, or be prepared to remediate quickly
 – You will learn basic, inline x86 assembly
 – You must learn on your own/with lab partner

• The lab is difficult, but worthwhile
 – You will want to commemorate, with a T-shirt, tattoo, etc.
JOS

• Developed at MIT, used at several top schools
 – The “J” is for Josh Cates, not Java
• In C and Assembly, boots on real PC hardware
 – You get the skeleton code, fill in interesting pieces
• Build the right intuitions about real OSes
 – but with much simpler code
JOS 64

• You will actually implement a 64-bit variant of JOS

• Developed at Stony Brook!

 – Primarily by Amit Arya and Abhinand Palicherla

 – Contributions also by: Vivek Kulkarni, Varun Agarwal, Chia-Che Tsai, Tao Zhang, Sagar Trehan, Jiahong Huang...

 • Some of these final projects or just contributions from a previous 506 course

 • See your name here next year if you add a particularly useful feature!
CSE 506: Operating Systems

JOS Labs

- Binary Formats
- Memory Allocators
- System Calls
- File Systems
- Networking
- Device Drivers
- Memory Management
- Interrupts
- Disk
- Net
- Consistency
- CPU Scheduler
- RCU

User

Kernel

Hardware
Lab 6

• 3 Options
 1) Network device driver (guided assignment)
 2) Make JOS a hypervisor (guided assignment)
 3) Open-ended project
 • Add a significant feature to JOS
 • A research task on another system
Challenge Problems

• Each lab includes challenge problems, which you may complete for bonus points (generally 5—10 points out of 100)
 – Unwise to turn in a lab late to do challenge problems
 – Can complete challenge problems at any point in the semester---even on old labs

• Indicate any challenge problems completed in challenge.txt file
CSE 522

• This course can also count as your MS project course (CSE 522)
• Requirements: Same as 506, except:
 – You must do the labs alone
 – You must complete 1 challenge problem in each lab
No Textbook

• You’re welcome
• Several recommended texts
 – Several free on SBU safari online site
 – Others on reserve at library
 – Required readings will mainly be papers you can print out
Lectures

• Compare and contrast JOS with real-world OSes
 – Mostly Linux, some Windows or OS X, FreeBSD, etc.

• Supplement background on hardware programming
 – Common educational gap between OS and architecture
My Lecture Style

• I like participation and questions
• I can explain any concept in many ways, and explain missing background on the fly
 – ...but I can’t read your mind---I need to know if you don’t understand something!
SBU Capture

• Experiment: TLT will be recording the projection and audio (no video of me, sadly)
 – Recordings will be automatically posted to BlackBoard
 – Intended to help you study
 – Especially helpful for people without strong English

• This is best effort
 – No guarantee all lectures will be recorded

• This is no substitute for lecture attendance
 – Can’t ask questions

• If attendance suffers, I will stop recording lectures
Guest Lectures

• Senior graduate students will give some lectures to gain teaching experience
 – Including today!

• Professor Porter will review and critique guest lectures (in person or recorded) with guests

• Please:
 – Ask questions if something is unclear: in class or on piazza
 – Give Prof. Porter comments on guests (and his lectures)---positive and negative
Prerequisites

• Undergrad OS
 – In some cases, industry experience is ok
 – Worth brushing up if it has been a while
 – In-class quiz, due before you leave
 • If you can’t answer 50% of these questions, consider ugrad OS

• C programming

• Basic Unix command-line proficiency

• See me if you have already done the JOS lab, or similar
Piazza

• This is the primary announcement medium
• And for discussions about course work
 – Do not post code here or other solutions
 – Goal: Everyone can learn from general questions
• Material discussed on piazza can be an exam question

• Details for piazza forum are on the course website
Other administrative notes

• Read syllabus completely
• 2 exams cover: lectures, labs, mailing list
• Every student will get a VM for lab work
 – You may use your own computer, staff can’t support it
• All staff email goes to cs506ta@cs.stonybrook.edu
 – Except private issues for instructor only
VM Assignments

• Your VM is cse506-USER, where USER is your netid
• Each VM is hosted on the server esx1sc---esx4sc
 – You should receive an email with your server and initial password
• The account is cse506
• Once it is powered on, it will listen for ssh on port 130
• Change the password immediately
• Also, checkpoint your VM before you change things
Lab Partners

• Can work alone, but better with help
 – Some excellent students earned A’s working alone
 – Many good students earned B’s working alone
 – No need to be a hero

• Choose your own partners
 – Lab mailing list good for finding them

• Same for entire course
 – Changes only with instructor permission
To Do

• Email me your partner selection
• We will then create the git repository you will use to turn in your assignments
• In the meantime, clone the read-only, http repository to get started
• Please do this well in advance of the deadline
Academic Integrity

• I take cheating very seriously. It can end your career.
• In a gray area, it is your job to stay on right side of line
• Never show your code to anyone except your partner and course staff
• Never look at anyone else’s code (incl. other universities)
• Do not discuss code; do not debug each other’s code
• Acknowledge students that give you good ideas
Integrity Homework

• Exercises applying course policies and ethics to several situations
• Due in class 2/11
Lateness

• Each group gets 72 late hours
 – List how many you use in slack.txt
 – Each day after these are gone costs a full letter grade on the assignment

• It is your responsibility to use these to manage:
 – Holidays, weddings, research deadlines, conference travel, Buffy marathons, release of the next Zelda game, etc.

• 3 Exceptions: illness (need doctor’s note), death in immediate family, accommodation for disability
Lab 1 assigned (soon)

- Due Friday, 2/19 at 11:59 pm, eastern.
- Instructions on website
- Quick demo
Getting help

• TA’s (TBD) will keep office hours
• Instructor keeps office hours
 – Note that “by appointment” means more time available on demand
Questions?