Tuning RED for Web Traffic

Mikkel Christiansen, Kevin Jeffay, David Ott, F. Donelson Smith
University of North Carolina at Chapel Hill

Department of
Chapel Hill, NC

Computer Science
27599-3175 USA

http://www.cs.unc.edu/Research/dirt

Abstract

We study the effects of RED on the performance of Wls-
ing with a novelaspect ofour work being theuse of a user-
centric measure ofperformance — response time fefTTP
request-response pairs. We empiricalyaluateRED across a
range of parameter settings and offered loads. Our resiitsw
that: (1) contrary toexpectations,compared to &IFO queue,
RED has a minimal effect ddTTP response timesor offered
loads up to 90% ofink capacity, (2) responseimes at loads

in this range are not substantially effected by RED parameters,

of early congestion notification,have thepotential to im-
prove overall network performance as well as that seen by
individual TCP connections. In thisvork we testthis claim

and explore the impact of RED on the performance ofntioest
dominant subset ofCP connections orthe Internettoday:

Web traffic. In particular, weareinterested in measuring the
effect of RED on a user-centric measurepefformance — the
response time for an HTTP 1.0 request. Although pagorm-
ance ofRED andother earlycongestion notification mecha-
nisms continue to be the subject of much study, et@luation

(3) between 90% and 100% load, RED can be carefully tuned tgmetrics have largely been network-centric measures such as

yield performance somewhat superior F6FO, however, re-
sponse timesre quite sensitive tothe actual RED parameter
values selectedand (4) in suchheavily congestedetworks,
RED parameters that provide theest link utilizationproduce
poorer responsetimes. Weconclude that forlinks carrying
only web traffic, RED queuemanagementappears toprovide
no clearadvantage over tail-drofrIFO for end-userresponse
times.

1. Introduction

A recent IETF publication strongly recommended thevide-
spread deployment of active queue managertextinology in
routers to improve the performance of today’s Interpgt
Active queuemanagement refers to the practicendinipulat-
ing the queue at amutbound interface in a router to bias the
performance of flows that transit the rout&éhe goals of ac-
tive queue management are to (&jlucethe averagdength of
queues inrouters and thereby decrease the end-to-erdelay
experienced by packets, and (2) ensure that netwes&urces
are usednore efficiently by reducing the packdbss that oc-
curs when queues overflow.

The recommendedctive queuemanagement to be deployed is
random earlydetection better known asRED [13]. Under
RED, arouter will probabilistically drop anarriving packet
even though theueuefor the appropriate outboundhterface
is not full. The motivation for this “early” drop comesfrom
the fact that packet loss is the primary indicatocofigestion
for aTCP connection. By dropping packetefore arouter’s
queue fills, the TCRonnections sharinghe queuewill reduce

network link utilization or aggregateTCP throughput.
Moreover, as argued in Section 2 below, most of these evalua-
tion studies focused on simulations of long-livE@P connec-
tions such as (huge) fildransfers. In contrast, measurement
studies have shown that the majority T®P connections are
HTTP connection’ and that many of theseonnections are
quite short-lived, often orthe order of afew TCP segments.
More importantly, given that the performance of théernet

is becoming synonymouwith the performance of th&Veb,
understanding the impact of router forwardibghaviors on
user-visible performancemeasures is animportant (and
largely ignored) aspect of the evaluation of agngestion
control proposal.

At a high-level, we seek to compare the performancefiofP
request-response paitmder RED and more traditional tail-
drop? FIFO queuing. Unfortunately, measuring the perform-
ance ofHTTP underRED is acomplex problem. First, as de-
scribed in more detail in Section BED is ageneral mecha-
nism that is controlled by (at least) 5 separate control parame-
ters. Thereexist rules-of-thumkfor assigningvalues tomost
parameters [15], but little is known about how (or if) one can
optimize RED performance for given traffic class.Second,
even if optimal RED parametaettings wereknown, generat-
ing or simulating HTTP behaviors in a meaningfulvay is
problematic. There arefew models of HTTP traffic and it is
likely the case thatWeb traffic dynamics €.g, the mix be-
tweenHTTP 1.0 and 1.1 protocols)are evolving faster than

our current ability to measure and model the traffic.

Our general approach is to conduct a “Isienulation” of Web

their transmission rates and (ideally) ensure the queue does ndirowsing in a laboratory environment. By live simulation, we

overflow. The claim (borne out byignificant empiricaldata)
is that dropping packets prior to the overflow of the quetlé
reducethe overall rate of packdoss. Given that TCP traffic
dominates on Internet backbones [2BED, andother forms

* Work surﬁ)orted by grants from the National Scierfe@undation
rants CDA-9624662 and ITR 00-8287@jsco Systemsthe Intel
orp., and the North Carolina Networking Initiative.

* Current address: Aalborg University, Department of Comauter Sci-
ence, Fredrik Bajers Vej 7E, DK-9220 Aalborg @, Denmark. k

was performed while the first author wasviaiting student at theJni-
versity of North Carolina.

mean that we simulate a large collection of usemwvsing the
Web at aset of sites distributed throughout tleentinental
United States. The HTTP traffic generated by the simulated
users will traverse #&aboratory network with routers thaup-
port both RED andraditional tail-dropFIFO queuing. A num-
ber of instances of the user-browsing simulation program are

! For example, recent measurements on M@l backbone show that
about 95% of the bytes transmitted across the netaoekcarried by
TCP and of these, 50-70% are HTTP messages [25].

2 Tail-drop refers to the action of dropping a packet that was intended
to be added at the tail of a full FIFO queue.

Published inlEEE/ACM Transactions on Networkingolume 9, Number 3, (June 2001), pages 249-264

run to generate a configurableffered load on @ottleneck

experiments. Section 4 presents the performancauo$imu-

network link. The user HTTP requests will be delivered to a setlated Web browsing sessionsinder FIFOqueuing; Section 5

of servers that will respond with responses of ép@ropriate
sizes. Bothrequest andesponse packetare artificially de-
layed to simulate the round trip tim¢RTT) experiencedvhen
communicating with machines distributed across the Tifis

is done to ensureur end-to-endresponse-time measurements
reflect the full range of effects GfFCP congestion control and
retransmissionsexperienced by real users. When the re-
sponses are delivered back to the usersrewerd theelapsed
time for each simulated HTTP request/response pair.

This experimental setup provides a bafis comparing the
effect of REDv. FIFO queuing on thaesponse timdor HTTP
requests. We performed a seriesegperiments teempirically
determine the FIFQueuelength andcombination ofRED pa-
rametersettings thatresult in the best performance for our
network and oursimulation ofWeb traffic. From our experi-
ments we observe the following:

« Contrary toexpectations,when compared to groperly
configured) tail-dropFIFO queueRED has a minimal ef-
fect on HTTPresponse timesor offered loads up to 90%
of link capacity.

* Response time$or loads inthis rangeare not substan-
tially effected by values of RED parameters.

« Between loads of 90% to 100% of link capaciBED can
be carefully tuned toyield performance somewhat supe-
rior to FIFO. However, response timase quitesensitive
to the actualRED parameter values selected. dnr ex-
periments recommended parametesettings resulted in
poorer performance than FIFO. Worse, the “optimsdt-
tings that resulted in the best RED performanege non-
obvious and arrived at only through exhaustikal-and-
error experimentation.

presents resultfor RED queuing. Section 6 provides mae-
liminary analysis of the observed response tuhgtributions
under RED. Section 7 compares tRED and FIFO results. We
conclude in Section 8 with discussion of the results, the
limitations of our experimentsand results, and some com-
ments on future work.

For completeness, waclude two appendices. Appendix A
provides additional details omur experimental setup and
methods. Appendix B provides additional resdéta on our
RED and FIFO experiments.

2. Background and Related Work

RED is anactive queuemanagement mechanism that is in-
tended to address some of thigortcomings ofstandardtail-
drop FIFO queuenanagement [4]. In BIFO queue it ispossi-
ble for “lock-out” to occur, aondition in which a smalsub-
set of the flows sharing the linkan monopolize the queue
during periods oftongestion.Flows generating packets at a
high rate can fill up thequeuesuch that packets frorflows
generating packets at substantialbwer rates have higher
probability of arriving atthe queuewhen it is fulland being
discarded. A second problem withF#O queue isthat latency

is increased for all flows when thgueue isconstantly full.
Simply making the queue shorter will decrease ltttency but
negates the possibility of accommodating brief bursts of traf-
fic without dropping packets unnecessaril\RED addresses
both the “lock-out” problem by using random factor in se-
lecting which packets to drop and the “falleue’problem by
dropping packets early, before the queue fills.

The RED algorithm uses a weighted average of the tptalie
length to determine when to drggackets.When a packet ar-

« For loads of 90% to 100% of link capacity where RED has fives at the queue, if the weighted averggeuelength isless
the potential to provide better performance, performancethan @ minimum threshold valusin,, no drop action will be

becomes a subjective measuFar loads inthis range
there exists atrade-off betweenimproving response
times of short-lived connections and improvingsponse
times of long-lived connections.Both cannot beopti-
mized simultaneously.

* In such heavily congested networks, there existsade-
off between networlutilization and HTTP transaction re-
sponse timesRED parameters values that provide the
best link utilization produce poorer response times.

We have considerednly HTTP traffic in our experiments and
hence our resultare best interpreted as representingverst-
case scenario foRED performance on real Internéinks that
carry a mix of HTTP and other trafficlasses. Nonetheless, we
conclude that for links carrying only web traffiRED appears

taken and the packet will simply be enqueued. If the average is
greater tharmin,, but less than a maximuthreshold, max;,

an early droptest will be performed as described below. An
average queue length in the range betweerthtesholdsindi-
cates some congestion has begun and flows shoulbtifed

via packet drops. If the average is greater than the maximum
threshold value, &orced dropoperation will occur. Amaverage
queue length in this range indicatpsrsistent congestion and
packets must be dropped to avoidpersistently full queue.
(Theforced dropis also used when thgueue isfull but the av-
eragequeuelength is still below the maximumthreshold.)
Note that by using a weighted averag®ED avoids over-
reaction to burstsaand instead reacts to longer-terirends.
Furthermore, because thehresholds are compared to the
weighted average (with a typicaleighting factor, w,, of

to provide no clear advantage over tail-drop FIFO for end-users1/512), it is possible that no forced drops will take plagen

whose primary metric ofsatisfaction is responsdime.

Moreover, given the lack of engineering practicegtode the
setting of RED parameter valuesand ourdemonstrationthat

“reasonable,”but nonetheless sub-optimaRED parameters
values can result in poorer performance tHdRO queuing,
without furtheranalysis it is possible thawidespread RED
deployment may not provide the expected benefits.

when the instantaneous queleagth isquite large. Forexam-

ple, Figure lillustrates thequeuelength dynamics in a RED
router used in ouexperiments.For the experiment illustrated
in Figure 1, forced dropwould occur only in the oneshort

interval near the beginning when the weightedaverage
reaches the maximum threshold.

Theearly dropaction in theRED algorithm probabilistically

The remainder of this paper is organized as follows. Section 2drops theincoming packetwhen the weighted averaggieue

provides a more in-depth introduction RED andreviews the
literature in the performance evaluation RED and related

length is between thenin, andmax, thresholds. Ircontrast,
the forced dropaction in theRED algorithm isguaranteed to

active queuemanagement schemes. Section 3 describes ourdrop the incoming packet. In the case of early dropsptiob-

experimental methodand the designand calibration of our

Queue Length Drop Probability
Max queue .

length Forced
drop

Max threshold | /... %

Probabilistic
early drop

Min threshold

ERTETP]

} No drop
0 >

Time

Figure 1: An illustration of the desired behavior of a packet

queue at an outbound interface in a router. The gray line indi-

cates instantaneous queue length; the black line indicates th
weighted average queue length.

ability that the packet will be dropped is dependentsexeral
other parameters of the algorithm. An initidtop probability
P, = max(avg — ming)/(max, — min,), is computed, where
mayx, is the maximum drorobability (an additionalcontrol
parameter) andvg is the weighted averaggueuelength. The
actual drop probability is a function of theitial probability
and acount of the number of packe&hqueuedince thelast
packet was droppe®, = P,/(1 — couniP,). Note thatgiven a
weighted averagegueuesize, the impact ofmin, is dependent
on bothmay, andmax,. This means that one may findvalue
for min,, that results in good performance, but it mayy be
in combination with certain values ofax, and max,. In prin-
ciple, this is the case for all the parametdiise main control
parameters for RED are summarized in Table 1.

The design oRED is such that during the drop phases of the
algorithm, high bandwidth flows will have a higher number of
packets dropped since their packets arrive at a highethate
lower bandwidth flows (and thus are mdileely to be dropped

in an early dropaction). However, all flows experience the
same lossate under RED. Byusing probabilistic drops, RED
maintains a shorteaveragequeuelength, avoidinglockout
andrepeatedoenalization ofthe same flows when a burst of
packets arrives.

The original RED paper [13] presentednalysis and several
simulations toshow the results oRED usage and develop
insights into the effects differentRED parameters have on
performance. They arrived at suggested guidelines for usefu
ranges of parameter valuasd explanations othe considera-
tions thatwould influence tuning parameters to achieve de-
sired results for particular trafficharacteristics.Subsequent
analysis byRED's designersand others led to the current
guidelines ([15]) that are discussed later in this paper.

One of the earliest experiments with REIAs reported in[26]
andgives the results of liveéesting with a RED implementa-
tion in a router ahead of a bottleneck DS3 link itransconti-
nental network. These testgere conducted with amall num-
ber of continuously sending high-bandwidt@CP connec-
tions. Total throughput of th&'CP connectionswas the pri-

Table 1: RED control parameters.

len The maximum number of packets that
q can be enqueued.
min Queue length threshold for triggering
th probabilistic drops.
ma Queue length threshold for triggering
*n forced drops.
W Weighting factor for the average queuge
q length computation.
ma The maximum probability of performing
% an early drop.

e

mary measure operformanceand delays were not measured.
The results showedhat, in general,RED achieved better
throughput and better link utilization for multiple connec-
tions than comparable tail-draplFO. RED was also effective

in preventing congestion collapsghen the TCP windows
were configured to exceed the storage capacity oh#tevork.

A very important result showed that the interface queue (buffer)
size is a critical parameter even wigED andshould be 1-2
times the bandwidth-delay product at a bottleneck link.

A number of research efforts haf@cused onpossible short-
comings of the algorithms iRED and have proposednodifi-
cations and alternatives, among th&rJE [12], SRED (Sta-
bilized RED) [23], Adaptive RED [11], FRED (Flow Random
Early Drop) [17],and BRED (BalancedRED) [2]. We do not
comment here on theontributions and merits of thesepro-
posals except to note argnalysis or simulations that ex-
amine the behaviorand performance of “classic’RED. For
example, in [17]simulations are used todemonstratesitua-
tions in which RED does not provideprotection from non-
adaptive flows, and situations in which RED does paimote
fair sharing of link bandwidth betweeRCP connectionswith
long RTT or small windows, and other competing flows.

In [12] there are a suite of results frans simulations of RED
with ECN (explicit congestionnotification [14]) enabled in
both routers and end-systeRCP implementations.The simu-
lations focusedprimarily on the effects of the parameter,
used to smooth measurements of the avecmgeesize. Inter-
estingly, some of thesesimulations use alarge number of
sources (1,000-4,000) that generate traffic with Paoetff
periods and might providelues tobehavior in web-like traf-
fic. Unfortunately, because all themulations use ECN mark-
ing instead of packet drops, and end-to-end delays arearot
sidered, the results are not directly comparableuwowork on
packet-drop RED. Fengt al. presentsns simulations of RED
with packet drops irsituations where a moderate number (32
or 64) of continuously sendingCP connectionsshare dink
[11]. Herethe maximum drogprobability max, wasvaried to
see its effect ooss ratesand averagequeuelength. The re-
pults show that the “best” value farax, is dependent on the
number ofconnectionsand, for anysetting, the drop rate is
not significantly different from that of a tail-droplFO queue.
The argument is alsonadethat the effectiveness dRED de-
creases as the number ofnnections sharinghe queue in-
creases. This is because a small numberoohectionsactu-
ally receive and act on RED-induced congestion indications.

Results reported in [23] fasimulations of RED with persis-
tent (continuously sendingJCP connections (ranging from
10-1,000 connections)showed that routerqueue lengths
(measured in the total buffer space consunveste at orbelow
the minimum threshold for a small number afnnections and
stabilized around the maximum threshold for a large number of
connections. Simulationserealso conducted with more “re-
alistic” traffic by using a largenumber of TCP connections
(2,000-3,500) totransfer random size files with a sidéstri-
bution derived from measurements ®¥eb transfers [6]. Be-
tween file transfers, theTCP connections were idle for a
“think time” also based on the sandata (butwith the mean
reduced by a factor of 10 to generate a heavier IcEt).only
results reported fronsimulations with these traffic condi-
tions, however,werefor buffer occupancy in theRED router
which again demonstrated a tendency to stabiireund the
maximum threshold for larger numbers of active flows.

Recent work at INRIA has used analytic modatel simulation
[20] along with live testing on eommercialRED implemen-
tation [19] toquantify the performance effects &ED. The
emphasiswas onquantifying howRED influences lossrates,
patterns of consecutive losmean delayanddelay jitter for
mixes of “bursty” (TCP) and“smooth” (UDP) traffic, when
compared with tail-drog=IFO queuemanagementThe results
from analytic modelsvere confirmed withns simulations for

a number(up to 300) of continuously-sendingfCP connec-
tions sharing a bottleneck linwith UDP flows operating at
10% of the link capacity. Thegoncludedthat TCP “goodput”
does not improvesignificantly with RED and this effect is
largely independent of the number of flows. They also ob-
served that the mean queuing delay is lower with RED but has
much larger delay variance. In essence, fRED router be-
haved as a tail-drop router with cuieuelength equal to the
maximum threshold

Even though the INRIA work considers the effect of bgtleu-
ing delay and drop rates at routers, it doesint#gratethese
effects with the dynamics ofCP congestion controland re-
transmission todetermine the overall result on end-to-end
response timesor interactive or web-like trafficMoreover,
the goal in these experimentgas toexplore how changes in
Cisco’s WRED configuration parameters could used tocon-
trol performance.The measures of performanaeeerethrough-
put, bytes sentandpercentage otUDP drops. Therewere no
measurements of delays or end-to-end response times. The
conclusion was that determining the bestombinations of
RED parameters is difficult andoverall, RED did not show
much better performance than tail-droBIFO (except with
larger queuesizeswhere RED did show some improvement in
performance).

We are aware obnly two available reportfrom network op-
erators that have conducted pilot testsR&D in production —
those byDoran at Ebone [7hnd Reynolds atQualNet (now
Verio) [24]. Doran’s measurements using the Cisoplemen-
tation indicate that RED was able to sustain near 100%za-
tion on a 1,920Kbps customer-access linkwhere tail-drop
FIFO could not. Reynoldsusedthe Ciscoimplementation of
WRED on both éDS3 core networklink and a DSlcustomer-
accesslink. For the heavily congested periods on tlere
link, it was foundthat awide separation ofgueuethresholds
(min, = 60, max, = 500) producedthe best tradeoff fotink
utilization andlow drop ratesand wassomewhat superior to
tail-drop FIFO.The defaultvalues for dropprobability (1/10)
andsmoothing factor (1/512)were usedindtheir effects not
studied. For the customer accd3S1 links, (apparently) the

a

defaultsettings were used. Thesdinks were congestedonly
during some intervals and some increase in end-tolaescy
was observed withRED but the claimwas madethat “... the
user is not, in my opinion, inconvenienced, and hasbénee-
fit of limited packet loss’..[24].

In summary, while the results from these studies hadaed
important pieces oévidence to the growing corpus oiffor-
mation aboutRED, important elementsare missing. In par-
ticular, none of the work wiund explicitly considers RED
interactionswith Web-like traffic where end-to-endesponse
time is the primarymeasure operformance. Further, many of
the results on RED performance are based on “best save*
lations in which a constant number BEP connections, each
Ssending continuously, sharegaeuefacing a bottlenecKink.

In the work reported here, we consider theposite “worst
case” in which there is a dynamically changing number of TCP
connections with highly variable lifetimes.

3. Experimental Methods
3.1 Experimental Network

For our experiments we constructed a laboratory netwiost
models an enterprise or campus network having a siwgle-
arealink to an upstream Internet service provider (ISP). All
traffic using thelSP link is Web traffic wherethe requesters
(browsers) are all located on the enterprisecampusnetwork
ﬁnd all the requests are satisfied Wb servers locatedome-
where on the Internet beyond the ISP link.

The laboratory networkused toemulatethis configuration is
shown in Figure 2. Alkystems shown in thifigure are Intel
architecture machines runnirffigeeBSD2.2.8. Atone edge of

this network are machines thatn instances of &Veb request
generator (described below) each of which emulatesbtbes-

ing behavior of hundreds of human users. At the oduge of

the network are another set of machines that run instances of a
Web response generator (alstescribed below) thatreates
traffic in response to the browers' requests. In the remainder of
this paper weefer tothe machines running th&/eb request
generator simply as thtrowser machines” (ofbrowsers”)
andthe machines running th@/ebresponse generator as the
“server machines” (or “servers”)The browserandserver ma-
chines havel0/100 MbpsEthernet interfaces configured to
run at only 10 Mbps and are attached to a switcWiedN on a
Cisco Systems Catalyst 500@ll browser machinesare on

one VLAN and all server machines are on a separate VLAN.

At the core ofthis networkaretwo router machinesunning
the ALTQ version 1.2 extensions tereeBSD.ALTQ extends

Network Monitor
] = L]
= “Campus” “ISP” =h
Ethemet Router Router Ethemet
HTTP Switch Switch O HTTP
Request = =N Response
Generators 10/100 Generators
(“Browser machines”) = T - (“Server machines”)
. 10 Mbps :
] e
N k
etworl
Monitor
Requests Responses

Figure 2: Experimental lab

oratory network diagram.

the network-interface outpugueuing discipline to include
FIFO, RED, CBQ, andWFQ queuemanagement [16]. These
router machines are 300 Mhz Pentium lls. Each romi@chine

It is based on empirical data and is intendedufs® ingenerat-
ing synthetic Web workloads. The datawere extractedfrom
more than 230 hours of traces collected on the UC-Berkeley

has one 100 Mbps Ethernet interface attached to one of theampus in late 1995 and include over i@lion HTTP proto-

switchedVLANs on the Catalyst5000. Each routermachine
also has two additional 10/100 Mbps Ethernet interfamms-
figured to create tw@oint-to-point Ethernet segmentéusing
two hubs) that connect the routers as shown in Figurgt&tic
routes are configured on the routers so that all trédiffieiing
from the servers to the browsers uses one Ethesegment
and all traffic flowing in theopposite directioruses theother
Ethernet segment. This configuration allows usapproxi-
mate the full-duplex behavior of thgpical wide-arealink to
an ISP from a customersetwork. By configuring the router-
to-router Ethernet segments ton atonly 10 Mbps, we can
make our representation of th®P link be a potentialbottle-
neck since the aggregate bandwidth available tonmhehines
at each edge dhe network is constrained only by the 100
Mbps links from the VLANs to the routers. When théinks
connecting the routers are configuredrtm at100 Mbps, the
bottleneck is removed.

Another importantfactor in modeling thisconfiguration is
the effect of end-to-endatency. Weuse the dummynet[8]
component ofFreeBSD toconfigure in-bound packetelays
on theendsystems toemulate different round-trip times be-
tween each paring of a browser machara aservermachine.
The delays ranged fron7-137 millisecondsand were derived
from measurementata obtained at theNetStat.netweb site
[21]. (SeeAppendix A for the actual delay values used.) The
delays were chosen to represent a sample of Inteoneid-trip

col packets. These datgere used tacompute empiricadistri-
butions describing elements necessary to geneswtghetic
HTTP workloads. The elements of the HTTP model are:

e HTTP request length in bytes,
e HTTP reply length in bytes,
« Number of embedded (file) references per page,

« Time between retrieval of two successive pages (user
“think” time), and

« Number of consecutive pages requested from a server.

The empirical distributionsfor all these elementareused in
synthetic-traffic generator programs weote. The elements
that have the most pronounced effects on generated traffic are
the size of server responses, the number of requestsssary

to download a page (including aimbeddedeferences), and
the user“think” time between successive page requetBee
Appendix A for a more detailediscussion of theMah data.)

We usedthe Mah model to write Web-traffigenerating pro-
grams using the normasocket system calls provided in
FreeBSD. Most of thdehavioral elements diVeb browsing

are emulated in the client-side request-generating program. Its
primary parameter is the number lmfowsing users(typically
several hundred) the program is to represent. For each user, the
program implements a simple state machine tlegiresents
the user’s state as eith&thinking” or requesting aveb page.

times within the continental U.S. A given delay represents thelf requesting aveb page, a separat€CP connection, as im-

minimum round-trip time experienced by an arbitrary TCP
connection between a given pair of client and semmachines

plied by theHTTP 1.0 protocol, ismade tothe server-side
portion of the program for the primary pagedeach embed-

in our experiments (assuming no delays in the two routers). Asded reference (the distribution of embedded referencepaupe

explained below, the distribution AGFCP connections over
pairs of machines should be approximately uniform ahds,

is used to generate a random value). Another parameter of the
program is the number of concurrent T€fnectionsallowed

we can calculate the mean minimal round-trip time for all TCP on behalf of eactbrowsing user to makeembeddedrequests

connections sharinghe network aspproximately 79milli-
seconds.The defaultTCP window size in FreeBSD of 16K
bytes was used on all thend systems.(For othercharacteris-
tics of the TCP implementation, see Appendix A.)

The instrumentationused tocollect networkdata duringruns

within a page (this parameter is used to mimic the behavior of
Netscape and Internet Explorer).

For each request, a message of random size (sampled from the
request sizalistribution) is sent to theserver program.This
message contains a value tmepresents th@aumber ofbytes

of the experiments consists of two monitoring programs. Onethe server is to return as a response (a random sample from the

monitor is on the router interfacghere we arexamining the
effects ofqueuealgorithms. lItcalculates a meaandvariance
of the queue size sampled everyndliseconds. The maximum
and minimum queue size seen in @ample is alsaollected.
These statistics are logged every 100 milliseconds aleitl

distribution of response sizesyhe server sends this number
of bytes back to the browsandcloses theTCP connection.
For the experiments reported here, the server's “serice”
is set to zero so theesponse begins as soon as thquest

message has been received and parsed (this roughly models the

more general information about the number of transmitted andbehavior of aWeb server or proxyhaving a largemain-

droppedpackets.The secondmonitoring program runs on a
separate machine connected to the hubs forming lithies

memory cache with &hit-ratio near 1.0). For each re-
quest/response pair, the browser program logsratponse

between the routers (see Figure 2). Using a modified version otime. Response time idefined as the elapsed time milli-

the tcpdumpuitility, the machine collects th€CP/IP headers
in each frame traversing tHanks andprocesses these fmro-
duce a log of link throughput over each specified timrval
(typically one second). End-to-end performance measuek
as response timeare measured onhe end-systems as de-
scribed below.

3.2 Web-like Traffic Generation

The traffic that drives thexperimentsdescribed here ibased
on the model of web browsing developed by Mah [18hh’s
model is anapplication-level description othe critical ele-
ments that characterize how HTTP 1.0 [p2dtocols are used.

seconds between the time of the sockehnect()operation

and the time theesponse is completeahdthe connection is

closed. Note thathis response time ifor each element of a
page, not the total time to load all elements of a page.

When all the request/response pairs for a page have dogen
pleted, the emulated browsing user enters“thinking” state
and makes no more requests for a period of time sanfied
the think-time distribution. The number of page requests the
user makes in succession to a given server machisanigpled
from the distribution of consecutive page requests. Wher
number of page requests has been completed, the server to

handle subsequent requests is selected randandyniformly

from the set of active servers. The number of emulated users isnaximum number of expected requests without reaching a re-

constant throughout the execution of each experiment.

The HTTP 1.0 protocoimplies theuse of a newlCP connec-
tion for each request/response pair. Tphistocol is gradually
being replaced by the more efficient HTTP Jdotocol which
allows multiple and pipelined requests to reus@CP connec-
tions [22]. While somedatahave been reportece.@ [10])
suggesting that as many as 30%H¥TP requests nowse the
HTTP 1.1 protocol, we have been unable to find datamodels
sufficient for building asynthetic workload generator for
HTTP 1.1. For these reasons we generate only HTTRraffic
in our experiments. We note, however, thhe olderHTTP
1.0 protocols are expected to represent a eggwificant por-
tion of Webtraffic for some time because of difficultiegith

migrating the installed base of browsers. Furthermore, our
focus onHTTP 1.0 serves as a worst-case analysis of RED

performance.
3.3 Experiment Calibrations

There are two critical elements ofir experimental procedures

that had to becalibrated before performingxperiments: (1)

verified that even the slowest server machowld handle a

source limitation.

For the nextcalibration, weran aninstance of thebrowser
program on each of the browser machines and agaiformly
distributed requests across all sermachines. Each browser

was configured to emulate the same number of users with the

total users varied from 700 to 5,075. Figur@ldts aggregate

traffic on the path carrying response traffic from the servers as

a function ofemulatedbrowsers (users). Again the load is a
linear function of browsers indicating theaee no fundamen-
tal resource limitations in the systeamdgenerated loads can
easily exceed the capacity of a 10 Mbps link.

With thesedata we candetermine the number of emulated
browsers thatwould generate a specifioffered load inthis
configuration if therewere no bottleneck link presentThis
capability is used insubsequenexperiments to control the
offered loads on theetwork, including loads thatominally
exceed thecapacity of a 10 Mbps linkFor example, if we
want to generate aoffered loadequal tothe capacity of a 10
Mbps link, we use Figure 4 to determine thatnged toemu-

ensuring that no element on the end-to-end path represented late approximately 3,400 browsing usefsr a load 0f110%

primary bottleneck other than when theks connecting the

(11 Mbps) we need to emulate 3,750 users.

two routers are limited to 10 Mbps, and (2) the offered load on o motivation for choosing Web-like traffic to drive these

the network can be predictably controlled using the number Ofexperiments was the assumption that properly generated traf-

emulatedbrowsing users as a parameter to the traffienera-

fic would exhibit highly variableand bursty demands on the

tor. To perform these calibrations, we first configured the two petwork. To illustrate that this imdeed realized wittour ex-

segments connectinthe routers to eliminateongestion by
running at 100 Mbps.

Thefirst calibration performedwas to verify that the traffic
generator programs did not have any resoomestraintsthat
limited their ability toemulate hundreds of users. Thga®-
grams were implemented using efficient programmingch-
nigues formanaging large numbers of sockebnnections

(based in part on Bangand Druschel's scalable methods for

generating HTTP requests [3]). Fothis calibration wefirst

selected the slowest machine in our network (a 66 Mhz 486) t

run the browser program. We ran oirestance of theserver-
side program on each of the server machiaed configured

the browser program to select uniformly from all servers for

eachnew sequence gfage requestsThe number ofbrowsing
users was varied from 500 to 1,4@0dthe bandwidthused on

the 10 Mbps interface to the browser machine is plotted in

Figure 3 as a function of the number of simulatedwsing

users. These results show that over this range of users, there

a linear increase in generated trafficdthe traffic issignifi-

cantly less than the capacity of the host's 10 Mbysrface.
We repeated this experiment with a 200 Mhz Pentiumvidtb

the results also shown in Figure 3 for further confirmatioat

CPU andinterface speeds of thend system are not resource
constraints. Thus if traffic generation machires limited to

simulating nomore than1,400 users each, we can hlnfi-

dent that the number of users simulated ineaperiment is
accurate and reproducible.

A second concern is thatsingle programcan not faithfully
simulate hundreds ofbrowsers because by default, single
FreeBSDprocess camse atmost 64 socketsimultaneously.
However, because us#rink timesare muchlonger than the
times required to request pages, most ofahmilated users are
idle at any time. We explicitly performed experimentsdm-
onstrate that the 64 socket descriptdiraitation was never
encountered in practice. With a similar experiment ai&o

o}

perimental setup, we have plotted the results from one of the

calibration experiments (3,500 browsers)Figures 5and 6.
These plots show the number of requésisated during each
one second intervaleach request requiresnaw TCP connec-
tion) andthe number ofbytes requestednot necessarily re-
ceived) in each one secoridterval. Clearly theseshow the
highly bursty nature of the traffic actually generated.

3.4 Experimental Procedures

Each experiment was run using tfelowing procedure. After
Initializing and configuring all routeand end-system parame-
ters, the server-side processwsre started followed by the
browser processes. Each browser emulatedgaalnumber of
userschosen, aslescribedabove, to place a nominaiffered
load on an unconstrained (100 Mbps) netwotke offered

loads used in the experiments were chosen to represent 50, 70,

80, 90, 98, or 110 percent of the capacity of a 10 Mipk
connectingthe two routermachines.Loads exceeding110%

Were tried; it turned out, however, that the extreme duration of

the connections when using a congested link causedraffec

generators to occasionally use all available sockets and fail to

generate thalesiredlevel of traffic. Because theneasured re-
sponse times atlaad of 120%had deteriorated wellbeyond

levels that most usemsould tolerate, wedecided tonot con-

sider loads beyond 110% on the congested link.

Each experimentwas runfor 90 minutes butdata collected
during the first 20 minutesvas discarded teliminate startup

and stabilization effects. These effects are illustrated in Figure

7 which shows a plot of mean response tinf@srequestgdur-
ing each one second interval in a typical experimé&gure 8
gives a plot of the cumulativdistribution of responsgimes
at a load from3,500 browsers in an unconstrainatetwork.
Note that about 90% of the requests complete in Blisec-

onds or less. Figure 8 represents the best-case performance for

HTTP request/response pailand will be used as @asis for
comparison with experiments on the constrairfedngested)

4500

‘ 16000

200Mhz Péntium Pro — e
66 Mhz 486 —— 14000 A
4000 ez
/ 12000 /’//
3500 P
// 10000 <
3000 "
8 & 8000 ///
¥ 2500 * /
/ 6000 vy 2
2000 4000 ff/
1500 ¥ 2000 /ZV
measured —+—
Y =2.95x-53.60 -------
1000 0 ‘ ‘ :
400 600 800 1000 1200 1400 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Browsers Browsers
Figure 3: Offered load as a function of the number of simu- Figure 4: Offered load as a function of the number of simu-
lated users on one machine. lated users on 7 machines.
220 5000
200 4500
180 4000
T ol {IN N 5 as00
: L] [3 000
S a0 TAmRIn it g |
3 3 2500 L i
2 120 Py ‘ ” |
2 2 2000 (UL \h\“ LA il
s 100 &
& ¥ 1500
8 [[Hw“w I 1000
60 I 500
40 0 I I I
0 500 1000 1500 2000 0 500 1000 1500 2000
Seconds Seconds
Figure 5. Requests per second from 3,500 users. Figure 6: Bytes requested per second from 3,500 users.
9000 100
8000 /
2 7000 s 8
= S
£ 6000 E
= £ 60
$ 5000 S
g &
2 4000 - o
14] 40
p | k|
=) 3000 g
g i 3
Z 2000 20
1000
3500 browsers +
0 1 1 1 1 1 0 L
0 1000 2000 3000 4000 5000 0 500 1000 1500 2000
Seconds Response Time (ms)
Figure 7: Average response time per second during an ex- Figure 8 Cumulative response time distribution for 3,500
periment. The plot includes the initial 20 minutes, where the users on the unconstrained (100 Mbps) network.

traffic generators are started and stabilize.

network link. Table 2 shows the number of requgsiserated output queuefor this link interfaceare reported hereThe IP
during a 70 minuténterval for each of the loads itypical output queues for thiénk interfaces on all other machines in
runs on the unconstrained network. the networkweretail-drop FIFO queuesvith the FreeBSD de-

fault queue size of 5@lements.Datacollected on thesénter-
Beca_luseresponsesare muchlarger _than requests, the load on faces using thaetstatfunction showed no dropped packets.
the link between routers that carries traffic from the servers to

the browsers (the linkrom the “ISP” router tothe “campus” The key indicators of performance wese in reporting our
router in Figure 2) will bamuchgreater than that on thénk results are the end-to-end response time®r each re-
carrying traffic in theopposite direction. Consequentlgnly quest/response pair. We report sevaraasures ofesponse

the effects of different queue management algorithms on the IRimes including the median, the percent of requestaplet-

Table 2: Typical numbers of requests in a 70 minute interval. this expression is that dhe link for the interface using the

ueue and delay is the mean round-trip time forcathnections
Load % Requests Load % Requests gharing the Iinky— a value that, in gegeral, very difficult to
50 240,379 90 425,293 determine. Foour experimental network, theneanminimum
70 329,638 98 461,837 round-trip time can be computed as 79 milliseconds and the 10
80 375,673 110 521,561 Mbps link has a bandwidth-delggroduct of approximately

96K bytes (see Appendix AfreeBSDqueuesareallocated in
ing in intervals of 0-1, 1-2, 2-Zandgreater than 3econds, terms of a number of buffer elementmlufy each with capac-
andplots of the cumulativedistributions of respons¢imes ity to hold an IP datagram of EthernTU size. Wemeasured
(usually showing only times less than emual to 2seconds). the mean IP datagram size dnr generatedNVeb response traf-
We alsomeasuredhe percent of IP datagrams dropped at the fic to be just over 1Kbytes so theFIFO queueshould have

link queue, the meagueuesize, andthe link throughputactu- appr0>_(imately 190-380queue elements to fall within the
ally achieved on the bottleneck link. guidelines.

We ran a number of experiments with a FIG@ue onthe bot-
4. FIFO Results P A

tleneck link varying theoffered loadand queuesize. Figure 9
To establish a baseline for evaluating the effects of using REDshows the cumulative response time distributiémsdifferent
on interfacequeuesfor links carrying only Web traffic, we FIFO queue sizes &ads of 80%, 90%, 98%and110%. At a

first examined the effects of FIFO queues with tail-dbmghav- load of 80%, there idittle effect fromincreasing thequeue
ior in our experimental networkFor theseexperiments we size from 30 to 24Glements. AB0% load webegin to see
created aottleneck between the two routers bgonfiguring queuesize havingmore significant effects on responsémes

the two segments connecting the router machinesirtcat 10 and observe that gqueuesize of 120 elements israasonable
Mbps using 10 Mbps hubs (see Figure Phe critical parame- choice forthis loading. The effect thatqueuesize has on re-

ter for a FIFO queue ithe size of the buffer spa@dlocated to sponse times depends on the size of the HTTP resptaiaeas
hold the queueelements.Guidelines (or “rules of thumb”) for is shown in theplots for 98% load.Increasing thequeuesize
determining the “best” queue size have been widely debated irfrom 30 to 120 has alightly negative effect on relatively
various venues including thERTF end2end-interestmailing short responses that could complete ifeva hundredmillisec-

list [9]. The guideline that appears to have attractedoagh onds by increasing the amount of time each packet spends in
consensus is to provide bufferirpproximatelyequal to 2-4 the queue.For a 10 Mbps Etherndink and anaverage frame
times the bandwidth-delay product of thiek. Bandwidth in size around 1 KBapproximately 1,000 packetsan befor-

100 100 =
o ——t—
"
~ 80 / . 80
g g
2 z
3 3
T 60 g 60
3 S
a o
(3 <]
= =
E 40 g 40
=3 3
E E queue length=30 +
O queue length=30 + O queue length=60 x
20 queue length=60 x| 20 queue length=90 x
queue length=120 * queue length=120 ©
queue length=190 o queue length=190 =
0 queue Iengt’h:240 | 0 queue Ieng'gh:240 o
0 500 1000 1500 2000 0 500 1000 1500 2000
Response Time (ms) Response Time (ms)
Figure 9a: FIFO performance at 80% load. Figure 9b: FIFO performance at 90% load.
100 100
/!.ﬁ?@‘/é*%g EW
—_ 80 o=y = 80
g = g
2 2z
S 60 g o0
Qo Qo
3 <)
g o P g
g g 7% ==
3 3
E length=30 + S queue length=30 +
queue leng
3 queue length=60 x 3 / queue length=60 x
20 queue length=90 % 20 queue length=90 * -
queue length=120 © / queue length=120 ©
queue length=190 = queue length=190 =
queue Iengt’h:240 o 0 queuelengt‘h:240 ©
0
0 500 1000 1500 2000 0 500 1000 1500 2000

Response Time (ms) Response Time (ms)

Figure 9c. FIFO performance at 98% load. Figure 9d: FIFO performance at 110% load.

warded per second. Thus a packetiving at thequeuealready
containing 100 packets has wait approximately 100milli-
seconds on the routeBuch a delay isignificant for requests
with short responses thanhay otherwise completevithin
200-350 milliseconds. Orhe other hand, increasing the
gueue size from 30 to 120 reduces response tsigasficantly
for long requests. Even though the time spent indieue by
each packet idonger, thereducedrate of drops meanthat
longer responsesareless likely to encounteretransmission
timeouts (whichare often longer thanqueuing delays by a
factor of 5-10 times). At queue sizes of 190 or 240itieeease
in response times for shoréquests appears to offset any im-
provement gained for longer requests from reduced drops.

Our results indicate that, overall, FIFO queuesize of 120
elements (aboutl.25 times the bandwidth-delgyroduct) to
190 elements (2 times bandwidth-delay) is a reasonaidéce
for loads up to thdink capacity. For offered loadghat only
slightly exceed thelink capacity €.g, 110%), weobserve
that queuesizes beyond 120 only exacerbate aready bad
situation. Additional measures of performance in these ex-
periments, including link utilization and drop ratesegiven
in Appendix B. These results confirm thaur selection of
queuesizes of 120-190 represent reasonatrkdeoffs for re-
sponse times withousignificant loss of link utilization or
high drop rates.

Theseexperiments illustratdas queuingtheory predicts) the
dramatic effect thabffered loads near aslightly beyond the
link capacity have on response timddgure 10 shows the
cumulative distribution of response times for these loadh
a FIFO queue of 120 elements. Clearly, response tifegsade
sharply when the offered loadpproaches oexceeddink ca-
pacity. If anISP haslinks that experience utilizatiorabove
90% over intervals greater thanfeav minutes, responséme
for Web users arseriously impacted. A secorithportant ob-
servation is that at loads belo80% there is ncsignificant
change in response times as a function of load.

5. RED Results

The goal forour experiments withRED was todetermine pa-
rameter settings thatprovide good performance for Web-

combinations ofvalues. Our approach for theRED experi-
mentswas todesign an initialset of experiments thatould
give a broadapproximation ofparameter values that result in
good HTTP performance. We then examine the effectsany-
ing each parameter individually usirngis initial determina-
tion as a baseline.

From our experiments with FIFO it is clear that there om@n-

plex tradeoff between response times $bprt responseshat

can be completed in faw hundredmilliseconds (best with a
short queue)and response timedor longer responses(best

with longer queuesandlower drop rates)The original Floyd
andJacobsonpaper [13] suggests guidelindsr tuning pa-
rameters that have been revised based on subsegupati-
enceandanalysis (see [15] for the currerguidelines). These
guidelines suggest that the most fundamental effamtsde-
termined by themin, andw, parameters which contrarade-

offs between average queue size and sensitivity to the duration
of periods ofcongestion.For our initial experiments we de-
cided to eliminate the size of the physical queue as a factor and
set the number of queue elements to 480, more than double the
largest average@ueuesize seen in thd=IFO experiments. In
these experiments wearied min, beginning with the guide-

line value of 5 and ranging up 0. Wefixed may, at 0.10,

w, at 0.002 (actually 1/512), andax, at 3 timesmin,, as sug-
gested in the current guidelines.

Each of the parameter settings was tried at six diffevéfeted
loads: 50%, 70%, 80%, 90%, 98%nd 110%. At 50%load

the number of dropped packets was between 0.808(0.01%

of the total number of packets transmitted. This means that at
loads of 50%andbelow, there is limited room fancreasing
the performance of the routgueuingmechanism. Posproc-
essing of the logs shows that theeuesize never reaches the
maximum value of 480 even at a load of 110%, though it is
possible in avorst-case scenario. As expected, the perform-
ance changesignificantly asthe load is increased from 50%
to 110%. Figure lillustrates typical result§rom these ex-
periments by showing the effect of varying loadsreeponse
time distributions with rin,, max,) set to (30, 90).

It is encouraging to see that performance degradatioty
occurs at loads greater then 70%specially when combined

traffic. We also examined the tradeoffs among the different with the fact that the drop rates at 50% load never exceeds

parameters in tuning for performanc&he RED queuing

mechanism has five different parameters for adjusting the al-

0.01% of the packets received at the router. This indidditat
parameter tuning will have limited effect until loadsach

gorithm’s behavior. An exhaustive search for the best parame{evels of 70-80% of link capacitywhen loads exceed0%,

ter values isimpossible because of the number gfossible

100 Y

Y.

V.
i/
J/

i

0 500

80

60
W}/@M

40

load=50%
load=70%
load=80%
load=90%
load=98%
Ioad‘:llo%

1500

Cumulative Probability (%)

20

O WO % X +

0

1000
Response Time (ms)

Figure 10: FIFO performance for different loads with a
queue length of 120 elements.

2000

the performance decreasesonotonically asthe load in-

P et
Fo
b
/

0 500

100

H/./“/././l——’i—"

80

" -

load=50%
load=70%
load=80%
load=90%
load=98%
Ioad‘:llo%

40

e

Cumulative Probability (%)

20

O mOX X +
i

1000
Response Time (ms)

Figure 11 The performance of RED at different loads.
w,=1/512 max=1/10, min,=30, max=90, gqlen=480.

1500 2000

10

creases.The most significantperformance decrease occurs at of min,, we first fixedmax, at 90 andvaried min,. We then
load levels of 90-110%. These are the mios¢resting targets held min, constant at 3@Gndvaried max,. We fixed max, at

for optimization, since this isvherethere issignificant per- 0.10, w, at 0.002 (actually 1/512), andglen at 480 as in the
formance to gain. previous experimentsFigure 13illustrates theeffect from

; . AR 0
We start by exploringoossible choiceor min, and max,. varying min,, on the response timaistributions for the 90%

Figure 12 shows theesponse timalistributions for the 90% Irtt)azﬂ.ltlhf%risLtjrlwtszek;(ts:anr?rg e?l)tlsvai:wylggnni){rhag;l%\i/‘mcnllrﬁ; mTaR(-e
and 98% offeredloads, respectively.These resultsclearl X - - e

show hat nave appicaton ofthe gudelns in 15] wih a 91 SANUeS 1 esponse Tmes ok uiinaton) sxdcor.
min, of 5 would result in poor performance for Web-dom_lnated all sizes of responses with the loadsnsidered here are
traffic. The best overall response-time performance is ob- achieved with in,, max,) = (30, 90).The complete results
tained with values forngin,, max,) of (30, 90) or (60,180). from these experirﬁents ;re again given in Appendix B

We see, as in the case of FIFO, that there is a tratietffeen)

better response times fehort responses at (30, 9a)d im- Experiments testing the impact of changiwgandmax, were
proving response timefor longer ones at (60180), espe- combined because of the cloeslationship between the two
cially at the 98% load. Although the differenca® not great, parametersThe values usedfor w, were: 1/512, 1/256, and
we prefer (30, 90) on the grounds that about 70% of the re-1/128. (The implementation d&ED requires thedenominator
quests experience somewhat betegponse times thawith to be a power of 2.) Decreasimgto 1/1024 wastried, but we
(60, 180). (One could also argue that (60, 180) is best becaustund it to be anunrealistic setting thatauses reaction to
it improves the most noticeable delays.) The compietults, congestion to beguite slow. The values ofmay, used were
including link utilization and drop rates for loads 080%, 0.05, 0.10, and 0.25Theremaining parameterazerefixed at

98%, and 110% are summarized in Appendix B. Thedeate min,, = 30, max, = 90, andglen = 480. All the different set-

a slight drop in link utilization for the (30, 90)setting over tings were tested at loads of 90, 98, and 110%.

fggd(fg% %fg&)saertgra%'itlé'lézéh:nglgrg ;%?uilrtsb rgi/sergrrt];ﬁ gtilrr]rées hese experiments showed that at all load levelséttng of

the RED settings fomgin,, max,) max, to 0.25 has a negative impact on performance, because
o n/ too many packetsre dropped. Figure 14 shows thresults

We next consider varying the ratio betwemin, andmax, by from the experiments at 90% load (the results at @88&imi-

holding one constant and varying the other.s€e the effect lar). At 90%and at98% load, the difference between thet-

100 100
I ,D/E/E i
= 80 - 80 W
S s
2 2
2 60 2 e Ve]
Qo Q
o 2 / M
[[
z 2
Z 40 B 40
=}
g g
8 minth=5,maxth=15 + 3 minth=5,maxth=15 +
20 minth=15,maxth=45 x - 20 minth=15,maxth=45 x|
minth=30,maxth=90 x* minth=30,maxth=90 *
minth=60,maxth=180 o minth=60,maxth=180 O
o ‘ minth=120,maxt‘h=360 u o ‘ minth:lZO,maxt‘h:SGO L]
0 500 1000 1500 2000 0 500 1000 1500 2000
Response Time (ms) Response Time (ms)
Figure 12a Response time CDF for offered load at 90% of Figure 12b Response time CDF for offered load at 98% of
link capacity (,=1/512 max=1/10, qler=480). link capacity (v,=1/512 max=1/10, gler=480).
100 100
——
-~ 80 . 80
& S
z z
g 60 g 60 ?
° °
a o
2 L g wg=1/512, maxp=1/20 +
g g 40 wq=1/512, maxp=1/10 X]
3 S wqg=1/512, maxp=1/4 *
E E wq=1/256, maxp=1/20 ©
9] minth=5 + o wQ=1/256, maxp=1/10 m
20 minth=15 x| 20 wq=1/256, maxp=1/4 o |
minth=30 * wqg=1/128, maxp=1/20 e
minth=45 0 wq=1/128, maxp=1/10 4
o minth=60 = | Wg=1/128, maxp=1/4 4
0
0 500 1000 1500 2000 0 500 1000 1500 2000

Response Time (ms) Response Time (ms)

Figure 13 The effect of changingin,. Load = 90% and Figure 14 Results for different values o¥, andmax..
max, = 90,w, = 1/512,max, = 1/10,qlen = 480. Load = 90%, andjlen= 480,min,, = 30, max, = 90.

11

S of e
A I
A LU

| 3L

best setting at 90% load
best setting at 98% load
highest link utilization

0) lowest drcIJp rate
0 500 1000 1500 2000 0 500 1000 1500 200C
Response Time (ms)

60

5%

Cumulative Probability (%)
Cumulative Probability (%)

uncongested

best setting at 90% load
best setting at 98% load
highest link utilization
lowest dr(lJp rate

B O X X +

WOk X +

Response Time (ms)

Figure 15a “Good” RED parameter settings at 90% load. Figure 15b “Good” RED parameters settings at 98% load.

100 100
t:a:l—ifﬁﬁﬂ:ﬁ:a:a
@jﬁ L]
W L P ==
80 % 80 W -
;\3 V ;\3 //Zéww
2 2 /)‘M
2 60 g 60 o N
Qo Qo
< S 5
o o
[[/
2 40 2 40
ket &
> 3
£ £
O (@) best setting +
20 best setting + 20 wg=1/512, maxp=1/20, th=(5,15),qlen=60 x
wqg=1/512, max_p=1/10, th=(5,15), qlen=480 x wq=1/512, maxp=1/10,th=(5,45),qlen=480 *
wq=1/256, maxp=1/4, th=(5,120), qlen=480 * wq=1/512, maxp=1/4, th=(5,90),qlen=480 ©
Wq:l/'ISlZ, maxp:lllO,lth:(120,150), qleln:480 o wq:l/?lZ, maxp:l/lO,lth:(120,360), qleln:480 u
0 0
0 500 1000 1500 2000 0 500 1000 1500 200C
Response Time (ms) Response Time (ms)

Figure 16a “Bad” RED parameters settings at 90% load. Figure 16b: “Bad” RED parameters settings at 98% load.

tings occurs beyond the knee (above th& gércentile) of the larger values to accommodate theghly bursty character of
CDF, meaning that changeswf andmax, mainly impact the Web traffic, the guidelines foRED parametersettings and for
longer flows. Overall, however, we conclude that there is no configuring interfacebuffer sizes (forboth FIFO and RED)
strong evidence to indicate using values other than shg- also hold for the Web-like trafficised inour experiments. We
gestedw, = 1/512 andnay, = 0.10. also conclude thaattempting totune RED parameteroutside

Finally, we consider the effect dlaving a limit on thequeue these guidelines is unlikely to yield significant benefits.

size such that therare occasionallyforced drops because the To illustrate the lattepoint, weexamined the entire suite of
instantaneougjueueexceeds the buffespace. Table Jjives experimentsconducted for the 90%nd 98% loads(including
experimental results wittour recommendedralues of RED some trial experiments with parameter values outside the

parameters for actuajueuesizes of 480, 160and 120 ele- ranges reported above) to find tlkembination ofsettings
ments. These results are very similar to RO results — the that gave the best results on three performance measures:
120 elementqueue (1.25 times bandwidth-delay) is @ea- “best” response times (a subjective choibecause of the

sonable choice at 90% and 110% loads while a logeue of trade-off between improving response times ghort v. long
2-3 times bandwidth-delay might provide some advantage atresponses), best link utilizatiorandlowest drop rateThese
loads just below link saturation. settings are shown in Table 4 and the response times shown in
L . . Figure 15. For 90% load, theererelatively small differences
Our conclusion is that, except forin, which should be set to between tuning for highest linktilization
Table 3 RED performance with recommended parameters and queue lengthdr lowest drop ratesand tuning for re-

110 160 1188 195 76.6 1864 39.1 13.0 12.2

constrained 100 Mbps network.)
110 120 1188 18.9 77.0 1840 39.3 13.2 125

Load Queue % Mean Median % <1 1<%<2 2<%<3 % >3 sponse tllmes. 698% loads, tunlng for
% Length KBS drop queue resp.(ms) sec sec sec sec hlg_hest link utlllzatlo_n has potentlally
90 480 1079 08 502 266 975 i3 50 13 serious effects on increasingesponse
90 160 1093 1.1 222 278 91.2 47 24 1)7 times. Note that the “best” overall re-
90 120 1066 0.7 18.8 266 93.0 4.1 1.7 1]2 sponse times are obtained for the 9B%d
98 480 1164 41 394 345 792 82 6.3 6j3 (only) with parameters that ampiite differ-
98 160 1175 59 46.3 397 72.4 9.7 8.2 97 ent from our generally recommendedset-
98 120 1171 55 44.3 377 74.2 9.2 7.7 8/9 tings. (In Figure 15, the “uncongested”
110 480 1187 197 76.0 1846 39.4 12.9 12.1 3 plots refer tothe performance on the un-

3

3

oo
o~y

12

Moreover, there is sasignificant down-side potential for
choosing “bad” parameter settings, especially at near-
saturation loads. We agasearched the entire set ekperi-
ments for the 90% and 98% loads looking for combinations of
RED parameters thaproducedresponse times that (subjec-
tively) represented poor choicese(, choices that increased
response times significantly for larger numbers of eithleort

or long responses)Figure 16 shows these result€learly
some parametesettings produceresults thatare considerably
less desirable than our recommended ones.

Table 4 Empirically determined “best” RED parameter values.

Load | min,, max, A max, Notes

90 30,90 1/512 1/10| best overall response
90 30,90 1/512 1/20| highest link utilization
90 120,360 1/512 1/10 lowest drop rate

98 5,90 1/128 1/20| best overall response
98 30,180 1/512 1/10| highest link utilizatiogn
98 90,150 1/512 1/10 lowest drop rate

6. Analysis of RED Response Times

While a detailedanalysis ofthe causes of theesponsetime
distributions observedinderRED remains the subject dir-
ther study, weareable to report the results of greliminary
analysis. We repeated two of tRED experiments reported in
Figure 12b using more elaboratestrumentation to provide
additional data for eactHTTP request/response pair. buddi-
tion to end-to-end response times, thmstrumentation al-

lowed us to determine a detailed breakdown of the number and®

types of retransmission eventgcurring in theTCP connec-
tions. WerepeatedRED experimentsfor an offered load of
98% with two sets oRED parameter values thgproduced
clearly different response time resultsify,, max,) = (5, 15)
and (60, 180). In both cases the remainiRED parameters
were fixed atmay, = 1/10,w, = 1/512, andjlen = 480.

Table 5 gives the percentage TP connections thaexperi-
enced no retransmissions, those that experienced omorar
retransmissions of 8YN segment, one omore retransmis-
sions of a FIN segment, one or magedransmissions of data
segment,andthose with anycombination ofSYN, FIN, and
data segmentretransmissions. In this analysis we consider
only retransmissions on the congested path from the server t

100

Lo

/”’é

80

60

s

.

1000 2000 3000 4000
Response Time (ms)

40

Cumulative Probability (%)

e
W
/

20

O WO ¥ X +

0 5000 6000

Figure 17. Absolute performance of flows experiencing re-
transmissions (fin,, max,) = (5, 15)).

Table 5: Summary retransmission statistics for experiments
with more detailed instrumentation.

Class of % of all TCP connections
retransmission event (miny, max,) = (5,15) (60,180)
No retransmissions 56.1 87.1
1 or more retransmissions 43|9 12/9
1 or more SYN segments 7.4 2.0
1 or more FIN segments 6.0 2.0
1 or more data segments 255 8.5
Combined SYN/FIN/data 5.0 04
Total TCP connections 439,979 460,022
Total segments lost 12.4% 2.4%

the client (there were no observed packet drops omreherse
path).

Figures 17and 18give the cumulativedistributions of re-
sponse timedor those connections thaxperienced no re-
transmissionsand for the connections thatexperienced re-
transmission events of the types described above. gligavn

is the cumulativedistribution of response timefor all con-
nections. In Figure 17 we observe that the response times for
about 50% of theconnectionswith FIN or dataretransmis-
sions are shifted relative to those with reiransmissions by
an amountcorresponding to typical retransmissidimeouts

in our experiments (approximately 1.5 second§he re-
sponse timedor connectionswith SYN retransmissions are
hifted even more because of the longer timeout§©R con-
nection establishment. Connectiomgith one or more data
retransmissions owith combinations of retransmission
types have heavier distribution tails (longer respotisees)
because of the cumulative effects of multiple retransmissions.

Comparing the two figures we observe that response times for
those connections having retransmissi@relonger in Fig-

ure 18 by a factor somewhat greater than the additioresn
queueing delay fothis case (about 55nilliseconds). Our pre-
liminary analysis indicates that changes in respotisees
because ofretransmissionsare acomplex combination of
factors that influence the retransmission delays. These include
the mean queueing delay (which influences the estinmRied,

6he deviations in RTT caused by increased variance in queueing

delays (which are magnified by a factor of 4 in fi@P algo-

/
/

100

=

_—

80 =

.

60

/
7

40

Cumulative Probability (%)

20

O mQO X X +

vy

1000 2000 3000 4000
Response Time (ms)

0
0 5000 6000

Figure 18 Absolute performance of flows experiencing re-
transmissions (Gin,, max,) = (60, 180)).

13

100
95

90 /
85

80

e

75
70

S

/ No RetransmissiongANR)
NR + SYN one of more

NR + FIN or more

one or more

NR + Multiple types
ALL

1500

\
i
\\\

65

Cumulative Probability (%)

60

——

55

O mOxX X +

/

50

|
1000
Response Time (ms)

500 2000

Figure 19 Relative contribution of flows experiencing re-
transmissions to total distributionn{n,, max,) = (5,15)).

rithm for computing the timeout), the timer granulari¢00
milliseconds), and the minimum timeout value (kecond).
(For a more comprehensive analysis of thasdother factors
affecting TCP retransmissions see [1].)

Therelative contributions ofach class ofetransmission to
the overall response time distribution is shownFigures 19
and 20. They show the cumulativéistributions of connec-
tions with the following characteristics: those with no re-
transmissions,those with either noetransmissions oonly
SYN retransmissions, those with either maransmissions or
only FIN retransmissionsand those with either naetrans-
missions or onlydatasegmentretransmissions. Tonagnify
the relative contributions of each class we only showpthe
tion of the distribution beyond the B@ercentile. Contrary to
our expectations, retransmissions of 10S¥Ns (even when
most of theTCP connectionstransfer relativelyfew bytes) is
far from being the dominant factor leading to increased
sponse times. It is, in factlatasegment retransmissiorthat
have the greatest cumulative effect.

re-

Another view of these dynamics is shown in Figure tBat
gives a scatter plot of response times versus semply
sizes. There isone dot inthis plot for each of theapproxi-
mately 400,000 connectionswith reply sizes lessthan
16,000 bytes irthe experiment illustrated in Figures 17 and
19 ((min,, max,) = (5, 15)). Connections experiencing one or

5000

4500

4000

3500

3000

2500

2000

Response time (ms)

1500

1000 7 g

500 }i

4000

| | |
8000 10000 12000 14000 16000
Reply size (bytes)

0 |
0 2000 6000
Figure 21: Scatter plot of response timgsreply size

under RED for tfin,, max,) = (5,15).

100

95

90

=
%(

85

80

75
70

29

65

Cumulative Probability (%)

No Retransmissions (NR)

NR + SYN one or mor
60 SYN one or more

NR + FIN one or more
NR + DATA one or more

NR + Multiple types
i// Il Il ALL

55

O WO * X +

50
1000

Response Time (ms)

1500 2000

Figure 20: Relative contribution of flows experiencing re-
transmissions to total distributionng{n,, max,) = (60,180)).

more retransmissionsare markedvith dark black dotswhile
those with no retransmissions are marked with gray ddds-
eral features of this plot are striking:

* The large influence of retransmissions on respdanses
for short responsese(g., the large number of replies of
size less then 4K bytes that take 5 seconds to complete),

e The clear regions of response timdigided betweercon-
nections with and without retransmissions,

The distinct bands of response times at intervalsghly
proportional to the granularity of the TQRetransmission
timer,

e The sharp step increase in response times with no re-
transmissionsfor those responses witkengths greater
than 2,880 bytes (corresponding to thé&ial TCP con-
gestion window), and

* The relatively few connections wittetransmissionghat
avoid a timeoutge.g, with fastretransmission (indicated
by black dots in the region dominated bwnnections
with no retransmissions).

This brief analysis has re-enforced our view thatlerstanding
the effects ofRED and FIFO queuemanagement on end-to-end
response times for HTTP traffic is a complex issuénWtolves
many trade-offs and parameters including not godyameters
set on routers but alsthose controlled at thend-systems
(e.g, TCP retransmission parameters).

7. Comparing FIFO and RED

Figure 22 shows the response tidistributions for RED and
FIFO with the parameters selected as a resulowfexperi-
ments at offered loads of 90%, 98%nd 110%, respectively.
Also included for reference are thesponse timalistributions

at these loads from thealibrations onthe unconstrainecdet-
work. The only case in which there is distinct advantage
from using RED is atthe 98% loadvhereresponse times for
shorter responsef80% of requestsare improved with care-
fully tuned RED parameters. Note that in Figure 22a we include
the response time distributiofor both (min,, max,) = (30,

90) and (60, 180). Recall that these settings gave nearly iden-
tical performance at 90% loaghd weselected rhin,, max,) =

(30, 90) as the best setting at this lefal largely subjective
reasons.

14

100

80

7
i

60

40

Cumulative Probability (%)

uncongested +
20 FIFO - glen=120 x
FIFO - glen=190 *
RED - wgq=1/512, maxp=1/10,th=(30,90),qlen=120 O
u

RED - wq:‘1/512, maxp:l/19, th:(60,180),qlqn:480

500 1000

Response Time (ms)

Figure 22a FIFO and RED at 90% load.

1500 2000

8. Conclusions and Future Directions

Based on ouexperiments wesummarizeour conclusions as
follows. Contrary toexpectations,for offered loads near or
below the levels of link saturation (90% or less), therbtite
difference in end-to-end response times betweerbést-tuned
RED andtail-drop FIFO configured with 1-2 times the band-
width-delay product in buffespace. Tuning of th&RED pa-
rameters generallproducedittle gain (or loss) in response

time performance, however, as illustrated in Figure 16a, one

canuseplausible valuedor certain RED parametersand pro-
duce poorer performance.

At offered loadsthat approach link saturation (abo@®%),
RED can be carefully tuned tgield performancesomewhat
superior to properly configured tail-drop FIFDhe difference
is probably significant onlybetween 90%and 100% loading

100

S/

80

kY
i

60

40

Cumulative Probability (%)

uncongested

/‘%
FIFO - glen=120
FIFO - glen=190

ED - wg=1/512, maxp=1/10, th=(30,90),qlen=120
RED - Wq:1/128, maxp:l<20, th=(5,90), qlgn:480

500

20

WOk X +

1000
Response Time (ms)

Figure 22b: FIFO and RED at 98% load.

1500 2000

100

un‘con‘ges‘ted‘
FIFO - glen=120
FIFO - glen=190

80 RED “wq=1/512, maxp=1/10,th=(30,90), glen=120

O XX+ |

60

|

500

40

Cumulative Probability (%)

20

1000
Response Time (ms)

Figure 22c FIFO and RED at 110% load.

1500 2000

as response times degrade so rapidly above this level that any

“improvement” from tuning RED (or FIFO) is, at best, a sec-
ond-order effect. Moreover, at loads above 90%sponse
times are more sensitive tothe actual values dRED parame-
ters. In particular, there is greater down-sm#ential from
choosing “bad” parameter values as illustrated in Fidueb.
This is significant because parametegettings that outper-
formed FIFO werarrived atonly through extensive trial-and-
error experimentation. lwasalso the case that thRED pa-
rameters that provide the best link utilization at tluad pro-
duce poorer response times.

In general we observed a complex trade-off betwalemosing
parameters that improve response tifoe short responses
(those consisting of only a feWCP segments)andthose that
improve response timef®r longer responses. Waave cho-
sen to favor those parametsettings that improve perform-
ance for the largest fraction oésponsesandhence have fo-
cused on improving response times for the shorter responses

Qualitatively these conclusions imply that providiagequate
link capacity (utilization less than 90%) is far maneportant
for Web response times than tuningueuemanagement pa-
rameters. If onedecides todeploy RED for any reason, re-
sponse timedor Web-dominated trafficare not likely to be
impacted positively and, unlesscareful experimentation is

performed, response times can suffer. Given the current lack of

a widely-accepted analytienodel for RED performance or
field-tested engineering guidelinesor RED deployment and
the complexity of settingRED parameters, there seems to be

no advantage to RED deployment limks carrying only Web
traffic.

In applying theseconclusions,there are somelimitations of
this study that should be considered.

e We used packet-drops as tbely “marking” behavior of
RED. Explicit marking by RED for ECN-capab®CP im-
plementations is likely to produce better results.

* We examined onlyHTTP 1.0 protocols. The interaction
of RED with a mix of HTTP 1.0 and HTTP 1.1 traffic
should also be analyzed.

e We studied dink carrying only Web-like traffic.More
realistic mixes ofHTTP andother TCP traffic as well as
traffic from UDP-based applications need to édeamined.
Congestion on both paths on a full-duplex liakd over
multiple router hops, should also be considered.

‘Removing thesdimitations to produce a broadqrerspective
on RED behavior is the central theme of our ongaiegwork-
ing experiments.

9. References
[1] M. Allman and V. Paxson, On Estimating End-to-End

Network Path Properties Proceedings o8IGCOMM ‘99,
September 1999, pp. 263-274.

15

[2] F. Anjum and L.Tassiulas,Balanced-RED: ArAlgorithm
to Achieve Fairness in thiternet http://www.isr.umd.-
edu/TechReports/ISR/1999/TR_99-17/TR_99-17.phtml

[3] G. Bangaand P.Druschel,Measuring the Capacity of a
Web ServerProceedings of th&JSENIX Symposium on
Internet Technologiesand Systems (USITS), December
1997, pp. 61-71.

[4] B. Braden, D. Clark, J. Crowcroft, B. Davie, Beering,

D. Estrin, S. Floyd, VJacobson, G. Minshall, (Rar-

tridge, L. Peterson, K. Ramakrishnan, S. Shenker, J.

Wroclawski, & L. Zhang,Recomedations oQueueMan-
agement and Congestion Avoidance in theernet RFC
2309, April 1998.
[5] P. Barford and M. E. Crovella&GeneratingRepresentative
Web Workloads for Networland Server Performance
Evaluation in Proceedings of Performanc®8/ACM
SIGMETRICS '98, 1998, pp. 151-160.

M. Crovella and A. Bestavros, Explaining World Wide
Web TrafficSelf-Similarity TR-95-015, Boston Univer-
sity Computer Science Department, Revised, October 12
1995.

(6]

[7]
[8] http://www.iet.unipi.it/~luigi/ip_dummynet/

http://adm.ebone.net/~smd/red-1.html

[9] ftp:/iftp.isi.edu/end2end/end2end-interest-1998.mail
[10] http://www.research.att.com/~anja/w3c_webchar/

[11]W. Feng, D. Kandlur, D. Saha, K.Shin, A Self-
Configuring RED Gateway Proc. INFOCOM ‘99, March
1999, pp. 1320-1328.

[12]W. Feng, D.Kandlur, D. Saha, KShin, Blue: A New
Class of ActiveQueueManagementAlgorithms Univer-
sity of Michigan Technical ReportCSE-TR-387-99,
April 1999.

[13]S. Floyd, and V. Jacobson,Random Early Detection
Gateways for Congestion Avoidan¢EEE/ACM Transac-
tions on Networking, vol. 1 no. 4August 1993, pp.
397-413.

[14] S. Floyd, TCP and Explicit Congestion Notification,
ACM Computer Communication Reviewpl. 24 no. 5,
October 1994, pp. 10-23.

[15] http://lwww.aciri.org/floyd/REDparameters.txt

[16] C. Kenijiro, A Framework for Alternate Queuein@owards
Traffic Management byPC-UNIX BasedRouters, Proc.
USENIX 1998 Annual Technical Conference, N&#xleans
LA, June 1998, pp. 247-258.

[17]D. Lin and R.Morris, Dynamics of Randori&arly Detec-
tion. Proc. SIGCOMM '97, Septemberd997, pp. 127-
138.

[18] B. Mah. An Empirical Model ofHTTP Network Traffic,
Proceedings of INFOCOM ‘97, April 1997, pp. 592-600.

[19] M. May, J. Bolot, C. Diot,and B.Lyles, Reasons not to
deploy RED Proc. IWQo0S'99, London, March99, pp.
260-262.

[20] M. May, T. Bonald, and JBolot, Analytic Evaluation of
RED Performance Proc. INFOCOM 2000, March 2000,
pp. 1415-1424.

'[21] http://www.netstat.net/

[22]H. Nielsen, J. Gettys, A. Baird-Smith, E.
Prud’hommeaux, H. Lie, CLilley, Network Performance
Effects of HTTP/1.1, CSS1, & PNBroc. SIGCOMM'97,
September 1997, pp. 155-166.

[23]T. Ott, T. Lakshman,and L. Wong, SRED: Stabilized
RED, ProceedingsEEE INFOCOM '99, March 1999, pp.
1346-1355.

[24] http://null0.qual.net/brad/papers/reddraft.hrh998 (link
now broken).

[25] K. Thompson, G. Miller, and R. WildekyVide-Arealnter-
net Traffic Patternsand Characteristics IEEE Network,
vol. 11 no. 6, November/December 1997, pp. 10-23.

[26] C. Villamizar and C. Song, High PerformanceTCP in
ANSNETACM ComputerCommunications Reviewyol.
24 no. 5, October 1994, pp. 45-60.

Appendix A
Details of the Experimental Configuration

TCP |mplementat|on characteristics in minimal round-trip time for allTCP connections sharing the

FreeBSD 2.2.8 network is the average of all entries in Table 1. This value is
The laboratory network used to emulate this configuration is aapproximately 79 milliseconds.

collection of Intel architecture machines runningreeBSD

2.2.8. All machines were configured identically. As config- Web-like traffic generation

ured onour experimental systemsTCPhas a default window 1,0 y1affic that drives thexperimentsdescribed here ibased
Size in o_f 16K bytes. Th&CP lmpl_ementatlon Support&eno on a model of welbrowsing developed biah [18]. The ele-
congestion controanddoes not includeéSACK or new-Reno anis that have the most pronounced effects on generated
functions. It supportsRFC 1323 (high performance — not yatic are the size (bytes) of servessponsesthe number of
enabled inour e_xperlments),RFC 1122 (delayed ACKs), and requests (files) necessary to download a page (including all
the Naglealgorithm. It does not supporRFC 2414 (larger o\hoqdedeferences)andthe user‘think” time betweensuc-
initial window) or RFC 2481 (ECN). The bugs fraRFC 2525 cessive page requests. M&und that the mediamesponse
(4.2 BSD) arefixed. The defaultinitial ssthreshis 1MB and sizes in four sub-samples of his tratta rangedetween 1.5

the behavior atwnd equal tossthreshis slow-start. KB and2.2 KB while the meansanged from8.3 KB to 10.6

N KB, characteristics thaare consistentwith heavy-tail distri-
Round trip times butions. He also found that the distributions of respmsiges
We use thelummynef7] component ofFreeBSD toconfigure above 1 KB could be modeled as Pardistributions with pa-
in-bound packet delays on the end systems to emulate differentametera = 1.04 to 1.14. Responssizesareactually further
round-trip times between each paring of a browserchine characterized depending on whether the response is to a re-
and aserver machine. Table 1 shows the differemtind-trip quest forthe primary page or aembeddedreference. Mah
times between each paring of browser mackindserver ma- foundthat thedistributions of primarypage sizes have a dif-
chine. The values in this tablaveretaken from measurement forent Pareto modeb(= 0.85 t00.97) than sizes asmbedded

data obtained at the NetStat.net web site _ . .
(http://www.netstat.ngt Each value igshe mean of 10sam- references modela(-f 1'13 to ﬁ'39)' Usg_r thml; tlmdmet;v;en
ples taken on different days for the reportedndtrip times nge r(;aqlu:sts W%re O.UE to have medians t82t7 rdngi gleg
between one of the probe-destination pairs in the NetStat datg# @nd 16seconds with means rangirfgom tol,9.
seconds, again characteristicensistentwith heavy-tail dis-

in July of 1999. The 49 probe-destinatiorpairs werechosen S - X

to repyresent a mix of Ir?ternet “distancerg’ in tbentinental trlbu_tl_ons (although Mah did not report any attempt to fit the

US. empirical data to a model such as Pareitie mean number of
requests (files) per page ranged betw@e® and 3.2 with a

A given entry inTable 1represents the minimumound-trip median of 1. More recent empiricdata andmodels reported

time experienced by an arbitrafyCP connection between a by Barford, et al, [4] confirms that theseharacteristics of

specific pair of client and server machinesour experiments Web traffic are well-modeled byheavy-tailed distributions.

(assuming no delays in the two routers). Given thatdikéri- The sizes of clientequestmessagesrerelatively small(me-

bution of TCP connections over pairs of machines is designeddians 0f231-244 bytesand means 0f301-356 bytes)and do

to be approximatelyuniform in our experiments,the mean not contribute greatly to the overall network loads.

Table 1: Round trip times in milliseconds between pairs of server machines (rows) and client machines (columns).

brain taz tweetie | howard lovey speedy | petunia
goddard 81 105 64 64 67 147 114
wako 126 137 47 53 41 86 114
floyd 33 42 40 114 112 117 108
goober 35 45 95 100 31 100 116
thelmalou 105 92 78 41 53 109 66
roadrunner 85 112 38 83 55 8 41
yako 124 87 101 87 95 7 61

16

Appendix B
Tables of Result Data

Additional FIFO Results — Choice of queue length

Table 1 provides additionalata onthe performance ofail- of 120-190 represent reasonalttadeoffs forresponsetimes
drop FIFO queuing for 5choices ofqueuelength and 4 load without significant loss of link utilization or high drop rates.
levels. These results confirm thatir selection ofqueuesizes

Table 1: FIFO results.

Load Queue | KB per % Mean Median % <1 | 1<%<2 | 2<%<3 | % >3
% Length sec. drops gueue |resp. (ms sec. sec. sec. sec.
80 30 992 1.1 6.5 246 92.2 4.5 2.1 1.3
80 60 980 0.3 11.7 248 95.5 2.9 0.9 0.7
80 120 990 0.1 22.7 264 95.8 3.0 0.6 0.6
80 190 992 0.0 27.7 273 95.5 3.3 0.6 0.6
80 240 981 0.0 25.8 265 95.9 3.1 0.5 0.5
90 30 1107 2.2 9.9 258 87.7 6.2 3.7 2.5
90 60 1130 0.9 20.0 266 92.4 4.2 2.0 1.3
90 120 1164 0.3 40.3 298 93.7 4.0 1.3 1.0
90 190 1106 0.2 66.6 361 92.1 5.4 1.3 1.2
90 240 1179 0.3 85.7 397 89.9 6.8 1.6 1.7
98 30 1163 6.7 16.6 329 71.8 11.1 8.5 8.6
98 60 1177 6.2 41.6 375 73.5 9.3 7.8 9.4
98 120 1169 3.1 84.8 421 81.2 7.5 5.2 6.1
98 190 1166 1.3 119.2 478 84.2 8.5 3.3 4.0
98 240 1167 1.4 154.3 555 80.0 11.3 3.7 5.0
110 30 1183 18.9 22.6 1538 44.6 14.5 11.1 29.8
110 60 1189 16.4 52.4 1440 47.7 13.3 11.7 27.4
110 120 1188 17.0 112.3 1600 45.1 11.3 12.9 30.p
110 190 1188 19.3 183.0 2156 37.3 10.8 14.7 37.p
110 240 1188 16.5 231.7 1917 38.7 12.3 13.9 35.p

Additional RED Results — Choice ofminy,
and max,,

Here we present additional data to support our choicealofes tweenmin, andmay, is fixed at 3 as per thRED guidelines
of min, andmayx, that provide the best performance for our [14]. These results (combined withose in thefollowing
HTTP workloads. In all the experiments reported herdixex section) confirm thabur selection ofqueuesizes 0f120-190
may, at 0.10,w, at 0.002 (actually 1/512), arglen at 480. represent reasonable tradeoffs for response times withigut

. _ . nificant loss of link utilization or highdrop rates. For our
Performance with max, =3 x min,,

o subjective measures of performance presented in Section 5,
Table 2 presents the performance of RED for 5 pairsofy(, the best overall response time performance is obtainiekl

may,) and 3load levels. In these experiments the ratio be- values for fin,, max,) of (30, 90) or (60, 180).

17

18

Table 2: RED results withmax, = 3 x min,.

Load (min,,, max,) KB per % Mean Median % <1 | 1<%<2 | 2<%<3 | % >3

% sec drop gueue |resp. (ms) sec. sec. sec. sec.
90 5,15 1068 3.2 7.1 257 83.6 8.0 4.8 3.6
90 15,45 1088 2.0 14.7 264 88.1 5.9 3.4 2.6
90 30,90 1079 0.8 20.2 266 92.5 4.3 2.0 1.3
90 60,180 1095 0.5 35.5 290 93.1 4.1 1.6 1.2
90 120,360 1094 0.1 53.8 325 93.7 4.4 1.0 0.9
98 5,15 1135 15.2 11.6 680 51.6 14.9 10.2 23.B
98 15,45 1158 5.8 24.0 338 73.3 10.5 7.9 8.3
98 30,90 1164 4.1 39.4 345 79.2 8.2 6.3 6.3
98 60,180 1178 2.4 69.1 384 83.2 7.1 5.0 4.7
98 120,360 1182 3.1 147.4 554 75.6 10.1 6.0 8.3
110 5,15 1147 24.0 12.6 1936 36.9 14.0 9.8 39.B
110 15,45 1175 23.4 36.1 1957 37.1 13.5 10.8 39.p
110 30,90 1187 19.7 76.0 1850 39.4 12.9 12.1 35.p
110 60,180 1187 17.9 157.6 2119 37.9 10.5 15.5 36.1
110 120,360 1188 15.5 303.4 2470 31.6 14.0 14.6 39.7

Varying the ratio of min, to max,,

Tables 3 and 4 provide data from the experiments that vary theand fourvalues ofmin,, are considered. In Table 4nin, is
ratio betweermin, andmax,. In Table 3may, is fixed at 90 fixed at 30 and four values afax, are considered.

Table 3: RED results for different values afin,, with max, fixed at 90.

Load |(min,, max,) KB Pper % Mean | Median| % <1 | 1<%<2 | 2<%<3 | % >3
% sec drop queue |resp.(ms sec. sec. sec. sec.
% 5, 90 1088 1.6 12.8 264 89.2 5.7 3.1 2.0
90 15, 90 1104 1.4 17.7 272 89.9 5.3 2.9 1.9
90 30, 90 1079 0.8 20.2 266 92.5 4.3 2.0 1.3
90 60, 90 1079 0.6 27.6 282 93.2 4.0 1.6 1.2
98 5, 90 1149 4.2 24.3 315 78.8 9.0 6.4 5.9
98 15, 90 1161 4.2 30.7 329 78.8 8.6 6.5 6.1
98 30, 90 1164 4.1 39.4 345 79.2 8.2 6.3 6.3
98 60, 90 1171 4.5 54.8 379 78.4 7.5 6.7 7.4
110 5, 90 1188 19.7 75.0 1912 38.0 13.3 12.5 36.p
110 15, 90 1188 19.9 75.2 1902 38.3 13.2 12.4 36.1
110 30, 90 1187 19.7 76.0 1846 39.4 12.9 12.1 35.9
110 60, 90 1187 21.7 80.4 1992 38.0 12.1 11.8 38.1

19

Table 4 RED results for different values aiax, with min,, fixed at 30.

Load (min,,, max,) KB per % Mean Median| % <1 | 1<%<2 | 2<%<3 | % >3
% sec drop queue |resp.(ms sec. sec. sec. sec.
90 30, 45 1088 2.1 20.0 279 87.9 5.7 3.7 2.8
90 30, 60 1106 1.6 22.0 280 89.3 5.3 3.2 2.2
90 30, 90 1079 0.8 20.2 266 92.5 4.3 2.0 1.3
90 30, 180 1092 0.9 25.7 281 92.1 4.3 2.0 1.5
98 30, 45 1144 9.4 30.0 377 69.2 10.0 8.4 12.3
98 30, 60 1162 6.7 36.2 372 72.1 9.7 8.1 10.1
98 30, 90 1164 4.1 39.4 345 79.2 8.2 6.3 6.3
98 30, 180 1187 5.6 72.0 446 71.8 9.5 8.4 10.3
110 30, 45 1179 22.5 37.9 1762 41.5 11.9 9.8 36.8
110 30, 60 1182 22.7 49.9 1908 38.0 13.2 10.7 38.1
110 30, 90 1187 19.7 76.0 1846 39.4 12.9 12.1 35.5
110 30, 180 1187 19.4 158.2 2354 35.3 10.4 15.5 38.1

