
TCP Rapid: From Theory to Practice

Qianwen Yin Jasleen Kaur F. Donelson Smith

University of North Carolina at Chapel Hill

Abstract—Delay and rate-based alternatives to TCP
congestion-control have been around for nearly three decades
and have seen a recent surge in interest. However, such
designs have faced significant resistance in being deployed on
a wide-scale across the Internet—this has been mostly due to
serious concerns about noise in delay measurements, pacing
inter-packet gaps, and/or required changes to the standard TCP
stack/headers. With the advent of high-speed networking, some
of these concerns become even more significant.

In this paper, we consider Rapid, a recent proposal for ultra-
high speed congestion control, which perhaps stretches each of
these challenges to the greatest extent. Rapid adopts a framework
of continuous fine-scale bandwidth probing, which requires a
potentially different and finely-controlled gap for every packet,
high-precision timestamping of received packets, and reliance on
fine-scale changes in inter-packet gaps. While simulation-based
evaluations of Rapid show that it has outstanding performance
gains along several important dimensions, these will not translate
to the real-world unless the above challenges are addressed.

We design a Linux implementation of Rapid after carefully
considering each of these challenges. Our evaluations on a
10Gbps testbed confirm that the implementation can indeed
achieve the claimed performance gains, and that it would not have
been possible unless each of the above challenges was addressed.

I. INTRODUCTION

Delay and rate-based alternatives to TCP congestion-control

have seen a significant surge in interest [1], [2], [3], [4],

[5], [6], [7], [8]—indeed, their performance gains (observed

both in simulations and simple testbeds) seem quite promis-

ing, often exceeding TCP performance by several orders of

magnitude. However, such designs have also faced significant

reluctance in being adopted or deployed on a wide-scale

across the Internet—this is primarily because the promised

gains observed under controlled and simulated settings are not

trusted to translate well to real-world settings.

Why? Firstly, because most of the alternatives rely on

measurement of metrics such as end-to-end delay or available

bandwidth as a measure of congestion, rather than on packet

loss—these metrics can be fairly volatile, and their measure-

ment can be quite prone to fine-scale buffering noise [9].

This is especially true in high-speed network environments.

Secondly, several protocols rely on fine-scale pacing of inter-

packet gaps (IPG), which are challenging to control pre-

dictably in interrupt-driven operating systems, especially at

high speeds. Thirdly, stepping away from a conventional

congestion-control framework that has been used and perfected

for more than three decades, is resistance-worthy—why would

an operator of production servers trust a new prototype?

This work was supported in part by the National Science Foundation under
Awards CNS–0347814, CNS–1018596, and OCI–1127413.

Given the promise of such congestion-control alternatives,

especially in high-speed networks, it is important to address

these challenges and open the real-world to their adoption.

Of all the proposed alternatives to the legacy TCP, RAPID

[7] perhaps stretches the above challenges to the greatest

extent. In simulations, this protocol shows outstanding gains

in terms of scalability, adaptability, TCP-friendliness, and fair-

ness. However, as described in Sections II-III, RAPID needs to

create µs-precision inter-packet gaps for all data packets sent

out. Further, it relies on observing fine-scale changes in inter-

packet gaps for estimating end-to-end available bandwidth,

which is fairly sensitive to the presence of fine-scale buffering

noise. Finally, RAPID relies on a “gap-clocked” transmission

of data packets, which is a significant departure from the

conventional “ack-clocked” TCP framework. In this paper, we

ask (in the context of TCP RAPID): can these challenges

be addressed in order to realize ultra-high speed real-world

prototypes that perform as well as the promise delivered by

simulations? If the answer is a yes for a protocol as demanding

as RAPID, then this would be a significant enabler for the

practical adoption of delay, rate, and bandwidth-based protocol

research.

Our Innovations This paper presents the following innova-

tions:

• We tailor the state-of-the-art for creating inter-packet gaps

in the Linux kernel, and show that it achieves µs accuracy

at ultra-high speeds.1

• We adapt the state-of-the-art denoising schemes for alle-

viating the impact of fine-scale noise, and achieve robust

bandwidth estimation for RAPID.

• We propose and evaluate the decoupling of the probing and

adapting timescales used in RAPID congestion control, for

alleviating the trade-off between responsiveness and stability

in the presence of volatile available bandwidth.

• We design all the components of RAPID as pluggable kernel

modules, which can be loaded/unloaded on the fly, without

bringing down production servers. These work with standard

TCP headers and the socket API.

• We evaluate the implementation design on 10/40Gbps

testbeds in the presence of representative and bursty cross-

traffic, and show that it lives up to the simulation-promised

performance. Furthermore, we show that this performance

can not be achieved without each of the above innovations.

In the rest of this paper, we summarize RAPID in Section II

and identify challenges in Section III. We present our design

1In this paper, “ultra-high speed” refers to 10 Gbps and more.



Rate 
Adaptor

Bandwidth
Estimator

Pstream 
Generator

avail-bw

Ravg <gs, gr>

   packets out                     ACK in
Fig. 1: TCP RAPID Architecture

of a Linux implementation in Section IV and our evaluations

in Sections V-VI. We conclude in Section VII.

II. BACKGROUND – TCP RAPID

Instead of simply relying on packet loss as congestion

feedback, RAPID continuously estimates the end-to-end avail-

bw, and uses the estimates to send packets out in logical

groups referred to as p-streams. The transmission of p-streams

is rate-based (and not ack-clocked), and is managed by three

components operating in a closed loop (Fig 1). Given an

average send rate Ravg informed by the rate adapter, the p-

stream generator sends packet out in units of p-streams. Once

the ACKs for a full p-stream return, the bandwidth estimator

calculates the end-to-end avail-bw, based on which the rate

adapter updates the sending rate for the next p-stream.

Pstream Generator RAPID uses each data packet sent for

probing the end-to-end path for some rate R, by control-

ling the send-gap (gs) from the previous packet sent as:

gs = P
R

. Within a p-stream, packets are sent at Nr different

exponentially-increasing rates (with Np packets sent at each

rate): Ri = Ri−1 × s, i ∈ [2, Nr], s > 1. Fig 2a plots the gaps

in a p-stream with Nr = 4, and Np = 16. The average send

rate of the full p-stream is set to Ravg , informed by the rate

adapter.

Bandwidth Estimator The RAPID receiver records the arrival

time of data packets and sends back the timestamps in ACKs.

Once the sender receives all ACKs for a p-stream, it extracts

these timestamps, computes the receive gaps (gr), and feeds

them to the bandwidth estimator.

The send and receive gaps, gs and gr are used to compute

an estimate for the end-to-end avail-bw (ABest), based on the

principle of self-induced congestion—for the i-th packet in a

pstream, gir > gis indicates that it experienced queuing at the

bottleneck (respective probing rate was higher than the avail-

bw). ABest is computed as the largest probing rate beyond

which packets consistently experience bottleneck queuing (e.g.

the second probing rate in Fig 2a).

Rate Adapter Ravg is initialized to 100Kbps. Thereafter, every

time ABest is updated, the average sending rate of the next

p-stream is also updated by applying a conditional low-pass

filter as:

Ravg =

{

Ravg +
l
τ
× (ABest−Ravg), ABest ≥ Ravg

Ravg −
1

η
× (Ravg −ABest), ABest < Ravg

where l is the duration of the p-stream , and τ and η are

constants. The effect of the above filter is that it takes about

τ time units for Ravg to converge to an increased avail-bw,

and η p-streams to converge to a reduced avail-bw.

Note that at p-stream timescale, packets are sent at an Ravg

no higher than the network can currently handle. However,

the exponentially-spaced p-streams are able to simultaneously

probe for rates both higher and lower than Ravg at smaller

timescales —this gives the protocol excellent agility in the

presence of dynamic cross-traffic. In fact, simulation-based

evaluations in [10] show that the protocol has close-to-optimal

performance along several dimensions, most notable of which

are: (i) discovering and adapting quickly to changes in avail-

bw (due to continuous probing at sub-pstream timescales);

(ii) negligible impact on co-existing TCP traffic (due to an

extremely low queuing footprint); and (iii) RTT-fairness, with

no bias against long-RTT transfers (due to shedding of ack-

clocking).

III. TCP RAPID: CHALLENGES IN PRACTICE

All of the performance gains reported in [10] have been

observed solely in the NS-2 simulator environment. Three

types of challenges can be identified in realizing the same

performance in the real world.

A. Fine-scale Inter-packet Gap Creation

Challenge RAPID requires the TCP sender to send packets

out with high-precision and fine-grained inter-packet gaps

(IPG) for the purpose of bandwidth estimation. For instance,

in order to probe for an avail-bw of 10 Gbps with even jumbo-

sized frames, packets have to be sent with spacing as small

as a few microseconds—and this value reduces proportionally

as we consider higher network speeds. A spacing inaccuracy

of even 1-2µs, can lead to a bandwidth-estimation error of

50%! Several other protocol proposals rely on fine-scale IPG

creation and face a similar challenge in scaling up to ultra-high

speeds [11], [12], [3]—the confounding aspect of RAPID is

that it uses every packet for fine-scale probing, whereas these

others rely on bandwidth probing only intermittently.

Sate of the art Existing bandwidth estimators [13], [14], [15]

and transport protocols [11], [12] create gaps for bandwidth

probing, by staying in a busy-waiting loop (often in user space)

until the desired time gap elapses. Unfortunately, ensuring

the fine-grained and high-precision IPGs needed for ultra-high

speeds can be fairly challenging in current software-based end-

systems, mainly for two reasons. First, most operating systems

are interrupt-driven, and the process sending out packets of

a p-stream may lose control of the CPU at any time while

“waiting” for the time-gap between two consecutive packets.

The resultant send gaps are unpredictable, and lack high

precision.

Second, before those packets get transmitted by the NIC,

they can get buffered at several places—in the protocol layer

buffers as they are being handed down the kernel protocol

stack, at the NIC interface queue when the kernel directs them

to the corresponding NIC, and on the NIC outgoing queue.

Such buffering can completely destroy the intended inter-

packet gaps. Some of the upper-layer buffering can be avoided

by using in-kernel support that relies on software timers

(e.g., qdisc watchdog timer used in Linux FQ scheduler and



 6

 8

 10

 12

 14

 10  20  30  40  50  60

In
te

r 
P

a
c
k
e
t 
G

a
p
 (

u
s
)

Probe Index

sendgap
recvgap

(a) Noise free

 6

 8

 10

 12

 14

 10  20  30  40  50  60

In
te

r 
P

a
c
k
e
t 
G

a
p
 (

u
s
)

Probe Index

sendgap
recvgap

(b) After bottleneck

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60

In
te

r 
P

a
c
k
e
t 
G

a
p
 (

u
s
)

Probe Index

sendgap
recvgap

(c) At receiver

Fig. 2: Probe streams Nr = 4, Np = 16

tasklets used in TRC-TCP [16]). However, such interrupt-

driven transmissions will lead to increased overhead of context

switch and consequently will slow down the system when

multiple high-speed flows coexist [17]. Besides, it can not

prevent packet buffering at the sending host.

Goal Our first objective in this paper is to address this

challenge and: consider and evaluate high-speed techniques

that enable fine-grained gap creation with high precision.

B. Noise Removal from Receive Gaps

Challenge Bandwidth estimation is key to RAPID, which

relies on the assumption that any fine-scale changes in inter-

packet gaps are indicative of the bottleneck avail-bw, and can

be used to robustly estimate it. However, even when p-streams

are sent out with accurate spacing, there are two types of noise

sources that can challenge this assumption:

• Burstiness in cross-traffic at bottleneck resources: In a

packet-switched network, traffic arrival can be fairly bursty

at short timescales [18]. As illustrated in Fig 2b, frequent

arrival of short-scale traffic bursts introduces noise in the

persistent queuing signature of Fig 2a, and can lead to low

estimates of avail-bw.

• Transient queuing at non-bottleneck resources: Even a non-

bottleneck resource can induce short-scale transient queues

when it is temporarily unavailable while servicing compet-

ing traffic. This can happen, for instance, while accessing

high-speed cross-connects at the switches, or while waiting

for CPU processing after packets arrive at the receiver-side

NIC. In fact, interrupt coalescence can force packets to wait

at the NIC before being handed to the OS for timestamping,

even if the CPU is available — this can introduce noise

worth hundreds of microseconds in inter-packet gaps [19].

Fig 2c plots the receive gaps observed when packets are

delivered by the receiver NIC to the operating system — the

inter-packet gap signatures are unrecognizable after interrupt

coalescence.

It is important to note that such noise impacts not only

other protocols that rely on bandwidth estimation, but also a

myriad of protocols that rely on delay-measurements, with the

performance of the former being more sensitive to noise [20],

[11], [3], [21].

State of the art While heuristics for smoothing out noise

have been designed for bandwidth estimators (e.g., [22]), most

need fairly long p-streams in order to scale to 10 Gbps and

beyond [19] — the longer the p-streams, the less are the

performance gains of a protocol like RAPID. The recently-

proposed denoising technique, BASS [19], aims for shorter

p-streams—it can help estimate bandwidth on 10 Gbps paths

with less than 10-15% error, using 96-packet p-streams2.

While BASS is a promising technique, it has been mostly

evaluated for bandwidth estimators — p-streams are sent far

apart and assumed to be independent, and the average rate of

each p-stream is not influenced by current ABest. Both of

these aspects do not hold within a congestion-control protocol

like RAPID.

Goal Our second objective in this paper is to: consider and

evaluate such highspeed techniques for reducing the impact of

fine-scale noise in inter-packet gaps.

C. Alleviating the Stability/Adaptability Trade-off

Challenge Noise is a particularly significant concern for delay

and bandwidth-based transport protocols due to the finer time

scales at which their respective congestion metrics are probed

for. The larger the timescales at which these protocols choose

to probe the network path, the smoother (and less impacted by

small-scale noise) their measurements will be. However, the

resulting protocol will be less quick in responding to changes

in network conditions. This trade-off between stability and

adaptability should be carefully balanced.

RAPID uses the same timescale (given by the length of a

p-stream) for probing for end-to-end avail-bw, as well as for

adapting the data sending rate to changes in avail-bw. Longer

p-streams allow the protocol to react to avail-bw changes only

at timescales at which the avail-bw is stabler and less noisy,

however, shorter p-streams allow the protocol to sample avail-

bw more frequently and track it more closely.

Goal Our third goal is to: alleviate the trade-off between

stability and adaptability by tracking changes in avail-bw

closely, while only adapting to it at stabler timescales.

D. Deployability Within the TCP Stack

Challenge TCP is the dominant transport protocol used by

most applications. In order to achieve widespread impact

and allow applications and network edge devices to work

seamlessly, RAPID should be implemented such that: (i) it

works with existing TCP protocol headers and the socket API;

and (ii) it is a pluggable module within widely-deployed TCP

stacks— in the context of servers, this caters to the requirement

2 In [23], a machine-learning approach is used to denoise inter-packet
gaps—however, no kernel-friendly implementation exists.



Fig. 3: Architecture of RAPID Implementation

of system administrators that the protocol implementation can

be loaded (or unloaded) on the fly without bringing down a

production server.

In widely-deployed TCP stacks, sending of data packets is

ACK-clocked and window-controlled—pluggable congestion-

control modules are supported in operating systems like Linux,

that allow changes to the amount by which window growth

occurs when ACKs are received (how many packets are

eligible to be sent out). However, these do not allow changes

to when a packet gets sent out. In contrast, the sending of

packets in RAPID is “gap-clocked”, in which the IPG (and

not ACK arrival) determines when the next packet should

be sent out. In fact, the receiving of ACKs and sending

of data packets are completely asynchronous of each other.

Clearly, supporting gap-clocking needs modules beyond the

TCP congestion-control framework.3

In addition, the RAPID receiver needs to observe in high-

precision, and communicate back to the sender, the gaps

between packets it receives. Delay-based protocols TCP-

LP [8] and LEDBAT [24] rely on TCP timestamping option

for computing one-way delays. However, this option carries

only milli-second resolution timestamps—timestamping with

micro-second precision, which is needed for high-speed net-

working, is not available. Furthermore, timestamps are pro-

duced when ACKs are generated, and not when the respective

data segments are received (subjecting gaps to variable ACK

processing times). Fig 5 plots the time difference between the

actual arrival of a data packet and the time recorded in TCP

timestamps (as observed on our 10 Gbps testbed)—we find

that the two can differ by up to 60µs.

Goal Our third goal is to: consider mechanisms that enable

RAPID to be loaded as a pluggable module on widely-

deployed TCP stacks, while supporting its high-precision and

fine-scale gap-clocking and timestamping requirements.

IV. OUR IMPLEMENTATION DESIGN

We present our design of a RAPID implementation for

addressing the challenges identified above.
A. Realizing Gap-clocking in a Standard TCP Stack

Current Linux kernel provides a congestion handler inter-

face, tcp congestion ops, which allows different congestion

control algorithms to be implemented in a pluggable manner.

Implementing RAPID boils down to: removing the dependency

of packet transmissions on ACK arrival and scheduling these

based on intended IPGs. We elaborate how both of these can

be achieved using the above interface and loadable modules.

3Other transport protocols that rely on bandwidth estimation, even inter-
mittently, require gap-clocking as well.

Fig. 4: Test-bed Topology

1) Removing ack-clocking: In RAPID, steady-state packet

transmissions in large transfers are not triggered by the arrival

of ACKs. ACK-clocking can be turned off with relative ease

by simply using the tcp congestion ops interface to fix cwnd

to a value much larger than the bandwidth delay product.4 As a

result of doing this, the TCP layer would send segments down

for lower layer processing as soon as data is made available

by the application.
2) Incorporating gap-clocking: The tcp congestion ops in-

terface does not allow control over when a segment is sent by

TCP. For scheduling packet transmission, we instead create a

new Linux Qdisc module (Es in Fig 3) which is attached to

a given network interface. Link-layer frames containing TCP

segments are processed by Es before being delivered to the

NIC device driver. Es responds to two calls—enqueue and

dequeue. It maintains a FIFO queue for each TCP connection

for buffering packets received from enqueue. Upon each

dequeue, it chooses the next packet that will be transmitted.

Es is responsible for enforcing IPGs within each TCP

connection. It (i) groups packets into units of p-streams; (ii)

computes per-packet gaps according to Ravg (using a data

structure shared with the TCP layer); (iii) assigns each packet

an intended transmission time (ts) according to the computed

gaps; (iv) schedules the departure of the head of queue at its

appointed ts (mechanisms discussed below).
3) Interleaving packets from multiple flows: To schedule

packets in the order of their ts from multiple RAPID connec-

tions that use the same NIC, we maintain a minimum heap

data structure—the elements of the heap are the packets at the

head (with the earliest ts) of each per-connection queue. The

dequeue function in Es removes and sends the top packet of

the heap to the NIC only if its intended ts time has passed.

With the presence of multiple RAPID flows, it may not

be possible to respect ts for every packet of every flow

(for instance, when the transmission time of two packets

from different flows are nearly the same). It is important to

realize that the resultant short-scale queuing is expected by

the bandwidth estimator. Indeed, the sender outbound link

represents the first shared link for those flows—the intended

send gaps control only the times at which the packets within

each flow arrive at the NIC, and not when they depart the NIC.

B. Creating Accurate Inter-packet Gaps

Several research projects have relied on hardware support

for fine-scale control of inter-packet gaps—for instance, the

Comet-TCP [16] protocol stack is fully implemented on a

4In our 10Gbps experiments, we set cwnd to 16000.



programmable NIC to create gaps with sub-nano precision.

However, the requirement of such specialized hardware se-

riously limits the deployability of a new transport protocol,

which is one of our prime goals.

[25] employs a novel approach for fine-scale control

of inter-packet gaps—it inserts appropriately-sized Ethernet

PAUSE frames to occupy the desired gap between two TCP

data packets. These special control frames are specified as

part of the IEEE 802.3x for flow control between two ends

of a link. They are discarded by a receiving NIC and thus

consume bandwidth only on the first link (typically, from the

sender to the first switch) on the path. As a result, the intended

gaps are preserved between successive TCP packets arriving

at the first outbound queue. [25] uses this Ethernet feature for

implementing paced TCP (constant gaps within a given flow).

Inspired by this approach, we design Es to send PAUSE

frames and data packets in an interleaved back-to-back manner

to the outgoing NIC, to be transmitted at line speed. For time-

keeping and fine-scale gap-control, Es relies on a link clock

(instead of the kernel clock), which tracks the transmission

time that would be consumed by all outbound packets that have

been sent so far to the NIC. The intended send time ts assigned

to each packet, is also compared to the link clock (and not

the kernel clock). Once dequeue is called, Es checks whether

the send time of the packets at the top of our heap is less

than or equal to the current link clock. If true, that packet is

dequeued and sent to the NIC; otherwise, Es creates and sends

a PAUSE frame of size (ts− link clock)×C, where C is the

link capacity, and ts corresponds to the packet at the top of the

heap. link clock is incremented by the expected transmission

time of the frame being sent to the NIC ( framesize
C

). Creating

a PAUSE frame of the above size ensures that the next time

dequeue is called, the packet at the top of the heap would be

eligible to be sent, and would have the desired gap from the

previous data packet. Thus, inter-packet gaps are achieved by

finely controlling the size of PAUSE frames.

We evaluate the accuracy of gap-creation using Es by

generating a large number of p-streams, covering a wide range

of probing rates from 100Mbps to 10Gbps. The actual gaps

are recorded by collecting traces using the DAG monitor

in Fig 4, immediately after packets traverse the 1st switch.

For comparison, we generate gaps with a user-level appli-

cation modified from pathChirp [13]. We also implement a

Qdisc that enforces ts by registering a software timer (with

qdisc watchdog interface) for every packet departure. Fig 6

plots the distribution of the difference between actual gaps

and intended ones—Es limits the error within 1µs, which is

significantly more accurate than using software interrupts or a

user-level application!

C. Timestamping Packet Arrivals

In order to record inter-packet receive gaps with µs pre-

cision, and communicate back to the sender using standard

header timestamp options, we create two Qdiscs ER and IR
at the receiver, and one IS ingress Qdisc at the sender (see

Fig 3). IR receives packets as they are delivered by the NIC to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Acknowledgement Processing Time (us)

Fig. 5: ACK Processing Time

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5  0  5  10  15  20

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

Errors in Inter Packet Gap (us)

user-space
PAUSE
hrtimer

Fig. 6: IPG Creation Error

the kernel and uses ktime to ns to timestamp packet arrivals

with µs precision—these are recorded in a table shared with

ER. Once an ACK is generated and sent by TCP to ER, it

looks up the table for the arrival time of the corresponding

packet that triggered this ACK, and substitutes it for the

TCP timestamp value in header timestamp (TSval) field—TCP

checksum is recomputed and updated accordingly.

When the ACK segment reaches the sender, the ingress

Qdisc IS saves the µs timestamp. To ensure correct TCP pro-

cessing (which expects monotonically increasing millisecond

timestamps), IS restores TSval field with the local millisecond

timestamp before handing the packet for upper-layer protocol

processing. The saved µs timestamp is shared with ES and the

TCP layer—it is used by the bandwidth estimator implemented

with tcp congestion ops, for computing ABest once a p-

stream is completely ACKed.

D. Denoising for Bandwidth Estimation

The recently-proposed Buffering-aware Spike Smoothing

(BASS) technique has been shown to work well in denoising

receive gaps within short multi-rate p-streams [19]. Below,

we briefly summarize the technique and then evaluate it in the

context of RAPID.
1) Buffering-Aware Spike Smoothing: BASS is based on

the observation that even though buffering events like interrupt

coalescence can completely destroy gaps for individual packet

within p-streams (Fig 2c), the average receive gap within

a single complete buffering event can still be recovered.

BASS recovers this quantity by first carefully identifying

boundaries of buffering events by analyzing receive gaps gr
—each “spike-up” and following dips in Fig 2c correspond

to packets within the same buffering event (packets queued

in the receiver NIC before generation of the next interrupt).

BASS looks for sudden changes in receive gaps to detect these.

After identifying buffering event boundaries, within each event

BASS replaces both gs and gr with their respective averages.

Such “spike-removal” is repeated up to three times until a

robust signature of persistent queuing delay is restored in the

smoothed p-stream. Fig 7 plots the BASS-smoothed gaps for

the p-stream in Fig 2c—the spikes are successfully eliminated.

The smoothed gaps for the p-stream are then fed into the

bandwidth estimator.
2) Re-evaluating BASS: [19] evaluates BASS for several

different settings of p-stream length—it shows that BASS can

estimate bandwidth with less than 10-15% error, using p-

streams with just 96 packets. For several reasons, however,

it is necessary to re-evaluate BASS in the context of RAPID:

(i) Unlike RAPID, [19] introduces a significant gap between



 6

 8

 10

 12

 14

 10  20  30  40  50  60

In
te

r 
P

a
c
k
e

t 
G

a
p

 (
u

s
)

Probe Index

sendgap
recvgap

Fig. 7: BASS-denoised Gaps

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Relative Estimation Error

γ=1
γ=2
γ=3
γ=4

Fig. 8: Decoupling Probing/Adapting
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

7

8

9

Time (s)

T
h
ro

u
g
h
p
u
t 
(G

b
p
s
)

 

 

avail−bw

Pkt Scale

Scalable

ｒａｐｉｄ

Fig. 9: Throughput with BCT

p-streams to ensure independence. RAPID, however, sends p-

streams back-to-back—any queue buildup on the path caused

by the previous p-stream may not drain out before the next one

arrives. (ii) Unlike [19], in which p-streams were generated

with pre-determined and controlled average send rates, the

Ravg for a p-stream depends on the ABest estimated by a

recent one. In [19], in fact, p-streams were filtered out if the

actual avail-bw did not fall within the range of their probing

rates. (iii) Unlike [19], standard TCP implementations rely on

delayed ACKs, and consequently, only every other packet gets

a timestamp.

We incorporate BASS within the RAPID bandwidth esti-

mator, to process receive gaps derived from ACK timestamps,

before computing bandwidth estimates (in the presence of

delayed ACK and p-stream-generation by the RAPID control

loop). We measure the bandwidth estimation accuracy of our

implementation (using the methodology in Section V) with

several different choices of p-stream length, including 32, 48,

64, 96. We find that N = 64 achieves the best bandwidth

estimation accuracy (errors less than 10% for over 80% p-

streams).

E. Alleviating the Stability/Adaptability Trade-off

The stability/adaptability trade-off discussed in Sec-

tion III-C is controlled by a single parameter—the p-stream

length (which represents both the probing and adapting

timescale). In order to alleviate this trade-off, we propose to

decouple the probing and adapting timescales of RAPID. We

achieve this by not requiring the sender to update Ravg upon

each ABest computation, but rather do it at a lower frequency

(γ). Specifically, we adapt the Ravg of the transfer only once

every γ p-streams, and set it to the mean of all γ ABests

collected since the last update.

Such decoupling naturally leads to a question: if we fix

the rate-adapting timescale (N × γ), do we get more accurate

bandwidth estimates using longer p-streams (large N , γ = 1),

or by using the mean bandwidth estimate of several smaller

p-streams (small N , γ > 1)? To study this, we fix the

rate-adapting timescale at 192 packets, and vary the probing

timescale per N=48,64,96,192 (γ = 4, 3, 2, 1, respectively).

Fig 8 plots the relative bandwidth estimation error observed

across several p-streams sent over our 10 Gbps testbed. We

find that using shorter p-streams (but the same rate-adapting

timescale) reduces the estimation errors from 15% to 5%!

However, when p-streams are shorter than 64 packets, the

estimation errors do not reduce with larger γ—this is in

agreement with our previous observation of the performance

with N = 64. In the remaining evaluations, we adopt N = 64
with the rate-adapting timescale of 192 packets (γ = 3).

V. EVALUATION OF RAPID IMPLEMENTATION

In this section, we experimentally study how close our

implementation gets to achieving the simulation-based perfor-

mance reported in [10]. The key performance gains reported

in [10] for RAPID were in terms of scaling to high-speed

throughput, adapting quickly to changes in avail-bw, co-

existing peacefully with low-speed TCP traffic, and inter-

protocol fairness. We attempt to recreate similar experimental

settings in our testbed, with some key differences: (i) We

focus on contemporary ultra high-speed paths of 10/40Gbps

capacity, while [10] focused mostly on 1Gbps paths, (ii) we

use a bursty, representative traffic aggregate as cross-traffic

for studying adaptability of RAPID, while [10] used a simple

synthetic cross-traffic stream, (iii) we use shallow-buffered

switches, while [10] provisions much larger buffers.

We also evaluate the Linux implementations of several

protocols for comparison—New Reno, Bic, Cubic, Scalable,

Highspeed, Hybla, Illinois, Vegas, Westwood, LP, Yeah and

Fast.5 For space constraints, we only present the results of

Cubic and Scalable in this paper—the former is the default

congestion control in Linux, the later consistently gives best

link utilization.6 Unless specified otherwise, we use the fol-

lowing settings for RAPID transfers: τ = 10ms, η = 3, and

RTT = 30ms (representative of the medium US continental

RTT).

A. Testbed Topology

The dumbbell testbed of Fig 4 consists of two HP 2900

switches with multiple 1Gbps and 10Gbps ports. The 10Gbps

switch-to-switch path is used to connect two pairs of 10Gbps

TCP senders and receivers. These hosts are Dell PowerEdge

R720 servers with four cores on 8 logical processors running

at 3.3GHz. The 10Gbps adapters on the two sending hosts are

PCI Express x8 MyriCom NICs, on the two receiving hosts

are PCIe Intel 82599ES NICs. The other 10 pairs of hosts

5Fast implementation is not publicly available. We implement it in Linux
based on its Linux-emulating pluggable NS2 simulation code. With default
parameters, it performs poorly in our testbed. Compound is no longer
supported in recent Linux kernels.

6Other protocols are included in [26].



with 1Gbps NICs are used to generate cross traffic sharing

the switch-to-switch link. The testbed also includes a 40Gbps

direct fiber-attachment over QSPF+ ports (not a switched path)

between one pair of the Dell servers. The 40Gbps adapters are

PCIe x8 Mellanox NICs. All hosts in the testbed run the latest

RedHat Linux 6 with 2.6.32 kernel.

For emulating path RTTs and loss properties for RAPID

transfers, we use extended versions of our Qdiscs IR and

ER on the receiver. The extended IR drops packets randomly

according to the required loss rate; ER delays the transmission

of ACKs to emulate RTT latency. For other TCP variants, we

use netem to randomly drop packets at the sender, and to delay

ACKs for RTT emulation at the receiver.

Limitations One limitation of using a real switch on our

testbed is that we are unable to log or finely monitor the bottle-

neck queue size—instead, we must rely on indirect measures,

such as packet losses and their impact on throughput. Second,

our switches are fairly shallow-buffered—this implies that in

all of our evaluations the bottleneck buffers are much smaller

than the bandwidth-delay product (shallow buffers have been

recommended widely for ultra-high speed networks [27]).

Finally, the CPUs on our Dell servers are unable to keep up

with 40Gbps throughput, and reach 100% utilization when the

transfer rates reach 20Gbps—this is the maximum achievable

throughput on the 40Gbps path.
1) Cross Traffic: We evaluate the RAPID implementation

against two types of cross-traffic—responsive traffic from em-

ulation of web users, and replayed traces of traffic aggregates

(with different levels of burstiness).

Responsive Web Traffic In order to generate bursty traffic

loads on the switch-to-switch bottleneck, we use 10 pairs of

hosts, each emulating thousands of web users by running a

locally-modified version of the SURGE [28]—they establish

“live” TCP connections with a diverse set of RTTs and inter-

arrival times, and produce representative and responsive HTTP

traffic. The average throughput of such traffic is 2.42Gbps. We

record the flow completion times for each TCP connection.

Replayed Web Traffic Aggregates We also generate bursty, but

non-responsive cross-traffic—this helps ensure repeatability

and burstiness control across experiments. For this, we record a

packet trace for each SURGE data source from the responsive

web traffic generation above. We then replay the trace using

tcpreplay. The average rate of the aggregated replayed traffic

from the ten traffic generators is around 2.5Gbps.

To obtain cross-traffic with different levels of burstiness, we

generate a smoothed version of the replayed traffic by running

a token bucket Qdisc on each sending host. We also generate

constant-bit-rate traffic from each sender using a UDP flow.

We denote these three burstiness levels as BCT (the most

bursty, raw replayed traffic), SCT (smoothed version of BCT)

and CBR (constant bit-rate). As a measure of burstiness, the

5-95% ranges of the bit-rates (observed at a 1ms timescale)

are 2.62Gbps, 1.40Gbps, and 0.49Gbps, respectively.

B. Sustained Throughput in Presence of Error-based Losses

Our first set of experiments evaluates achieved throughput in

the presence of random bit error-based loss rates, ranging from

 0

 2

 4

 6

 8

 10

0 10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

T
h
ro

u
g
h
p
u
t 
(G

b
p
s
)

Loss Rate

rapid
cubic

scalable

(a) 10Gbps

 0

 5

 10

 15

 20

0 10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

T
h
ro

u
g
h
p
u
t 
(G

b
p
s
)

Loss Rate

rapid
cubic

scalable

(b) 40Gbps

Fig. 10: Steady-state Throughput with Error-based Losses

TABLE I: Throughput and Loss Ratio of TCP flow

(Gbps)
(%)

with replayed traffic with responsive web traffic
UDP SCT BCT RTT=5ms RTT=30ms

RAPID
6.86

0.000
6.61

0.014
6.09

0.060
6.62
0.000

6.61
0.001

cubic
3.58

0.002
3.25

0.002
2.51

0.002
6.18
0.002

2.79
0.004

scalable
4.77

0.072
4.38

0.046
4.20

0.040
7.35
0.036

4.23
0.037

10−2 (very high) to 10−8 (very low). Fig 10 plots the steady-

state throughput achieved by each TCP protocol on 10/40Gbps

paths. We find significant throughput loss when error rates

exceed 10−6 for all protocols—however, RAPID scales much

better than others and yields more than double throughput

than most protocols. RAPID performs poorly with loss rate

10−2—losses in practically every other p-stream prevent it

from estimating avail-bw at all! The performance trends on

the 40Gbps path are similar to those on 10Gbps—both agree

with the scalability trends reported in [10]. For the remaining

evaluations, we use only the switched 10Gbps path.

C. Adaptability to Bursty Traffic

Next we evaluate the ability of the RAPID implementation

to adapt to non-responsive, but bursty cross-traffic. We gen-

erate and experiment with cross-traffic with different levels

of burstiness (as described in Section V-A1), and instantiate

a high-speed transfer using different protocols to share the

bottleneck link for 120 seconds. Table I shows the average

bottleneck link utilization and loss rates observed within the

high-speed transfer. We find that:

• The more bursty is the cross-traffic, the lower is the through-

put (and link utilization) achieved by a high-speed transfer.

This is true for all protocols and is to be expected—finite-

buffered switches suffer more losses in the presence of more

bursty traffic.

• RAPID significantly outperforms other protocols in its abil-

ity to adapt to burstiness—it consistently utilizes a much

higher fraction of the bursty avail-bw than other protocols.

Fig 9 illustrates this for BCT cross-traffic.

• With UDP and SCT, despite the higher utilization, RAPID

incurs much lower packet loss rates than Scalable—this

is indicative of the negligible queuing expected of the

protocol [10]. With BCT, RAPID yields 1.8Gbps more

throughput than Scalable, but also a higher loss rate. With

less aggressive rate-adapting parameters (τ = 50ms,η = 1

4
),

however, RAPID yields a 0.013% loss rate, while still

maintaining high throughput.



 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  10000  100000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

flow duration (us)

Web Traffic Alone
cubic

scalable
RAPID

(a) RTT=5ms

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  10000  100000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

flow duration (us)

Web Traffic Alone
cubic

scalable
RAPID

(b) RTT=30ms

Fig. 11: Flow Duration of Web Traffic

D. TCP Friendliness with Responsive and Bursty Web traffic

Web traffic transferred using conventional TCP continues to

dominate the Internet. A high-speed protocol can be deployed

over the Internet only if it has minimal impact on co-existing

conventional low-speed TCP transfers. To study this, we

generate responsive web traffic, as described in Section V-A1,

and instantiate a high-speed transfer that shares the bottleneck

link. We repeat the experiment by using different protocols for

the high-speed transfer, as well as with RTT=5ms (to emulate

increasing use of content distributions caches).

Note that each of the web transfers sharing the bottleneck

link with a high-speed transfer, is responsive to any increased

delays and losses. One important metric of web traffic per-

formance is flow duration—increased flow duration strongly

reduces user satisfaction. We use this as the primary metric in

this section to study the impact on web traffic.

The more quickly RAPID grabs spare bandwidth, the higher

is its throughput—however, the more transient queuing it

causes in bottleneck buffers, and the more it impacts the per-

formance of cross-traffic. In RAPID, this trade-off is controlled

by the rate-adaptation parameters (τ, η) [10]. We first study the

influence of these two parameters and briefly summarize our

findings below:7

• RAPID throughput: With fixed τ , RAPID throughput first

increases with 1

η
due to its more aggressive behavior, and

then decreases with it due to more induced losses. Identical

τ × η yields comparable throughput, which agrees with the

simulation results in [29]. As long as τ × η ≥ 5, RAPID

experiences negligible losses.

• Web traffic performance: Smaller τ×η increases the duration

of co-existing low-speed web transfers. Although identical

τ × η yields similar RAPID throughput, a larger τ helps

to reduce the median and the tail of the flow-duration

distribution for web traffic.

Thus, for network operators targeting minimal impact on web

traffic, a more conservative RAPID configuration with larger

τ × η and a larger τ is recommended. For our experiments in

this paper, we use (τ, η) = (50, 4).
For (τ, η) = (50, 4), Fig 11 depicts the cumulative distri-

bution of flow duration for web traffic, when they share the

bottleneck link with a high-speed transfer (the corresponding

throughput and loss rate of the high-speed transfer is listed in

Table I). We notice that RAPID impacts web flow duration

similarly to Cubic, while yielding much higher throughput

7For space constraints, we include detailed results only in [26].

 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100  120  140

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

Time (s)

Flow1
Flow2
Flow3

(a) scalable

 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100  120  140

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

Time (s)

Flow1
Flow2
Flow3

(b) RAPID

Fig. 12: Intra-Protocol Fairness
TABLE II: Necessity of Implementation Mechanisms

RTT=30ms
No cross With 2.42 Gbps web traffic

traffic(Gbps)
Throughput(Gbps)

Loss(%)
median low
duration(ms)

Full RAPID 9.44 7.00, 0.001 1.45

V1 (no PAUSE) 8.37 6.77, 0.004 1.28

V2 (no µs
timestamp)

9.83 7.64, 0.217 520.64

V3 (no arrival
timestamp)

7.91 6.43, 0.001 1.24

V4 (no BASS) 9.82 7.83, 0.151 8705.24

V5 (no γ) N=64 8.99 6.45, 0.002 1.23

V5 (no γ) N=192 9.49 6.33, 0.007 1.45

(especially with RTT=30 ms). All other protocols either fail

to grab a good share of bandwidth (e.g. Cubic), or behave

so intrusively so as to more than double the median of flow

duration and significantly lengthen the tail distribution (e.g.

Scalable). We conclude that RAPID best addresses the trade-

off between link utilization and TCP-friendliness—it achieves

considerable link utilization while least starving conventional

TCP traffic.

E. Intra-protocol Fairness

We next evaluate the intra-protocol fairness properties

yielded by our implementation. We initiate three iperf flows

between two pairs of end hosts. Each transfer emulates

RTT=30ms and is active during different time intervals.

Fig 12a depicts the time-series of throughput obtained by

the three transfers while we use Scalable as the underlying

protocol—the protocol fails to yield any notion of fair share

of the avail-bw. However, RAPID yields much greater fairness

among co-existing flows in Fig 12b. This experiment and re-

sults are very close to the fairness observed under simulations

in [10].

VI. HOW CRITICAL ARE THE ADDED MECHANISMS?

We have introduced several mechanisms to realize our

RAPID implementation on a real system (vs. a simulator,

as in [10])—these include: (i) inserting PAUSE frames to

ensure precise gaps; (ii) implementing Qdiscs (IR, ER, and

IS) for higher accuracy in timestamping packet arrivals at the

receiver; (iii) adapting BASS for accurate bandwidth estima-

tion with short p-streams of N = 64; and (iv) decoupling

the probing and adapting timescales to alleviate the stability-

vs-adaptability trade-off. In this section, we ask: are each of

these necessary for achieving RAPID performance gains in

high-speed settings?

To answer this, we first run a RAPID flow with the com-

plete set of mechanisms, under two experimental conditions—

without any cross-traffic, and with the responsive web traffic



of 2.42Gbps burstiness on the 10 Gbps switch-to-switch link.

Then, we reduce each of these mechanisms individually, and

repeat the two experiments above (results in Table II):

• V1: Instead of inserting PAUSE frames for gap creation,

ES registers an hrtimer (using qdisc watchdog) to schedule

transmission. Fig 6 illustrated that there are significant

errors in the intended send gaps in V1—the performance

is naturally impacted. However, the impact of inaccurate gs
is lower than expected—this is due to alleviation by BASS,

which is good at handling buffering related noise.

• V2 gets rid of IR and ER, but relies purely on the TCP

timestamp option for estimating receive gaps.We find that

V2 persistently over-estimates avail-bw as full link capac-

ity,8 starving cross-traffic and causing considerably high

packet losses. This is because, with V2, the ms granularity

of TCP timestamps obscures any fine-scale queuing delays

within p-streams.

• V3 does not timestamp packet arrivals with IR, but it

does replace ACK timestamps with a µs precision value

when each ACK is generated. ER gets a timestamp by

calling ktime to ns, and writes it in the TSval header

field of returning ACKs. We find that V3 is influenced by

ACK processing delays—it under-estimates the avail-bw,

and under-utilizes the path even when it is idle.

• V4 gets rid of BASS denoising, and uses the raw receive

gaps of p-streams for bandwidth estimation. We find that

V4 persistently over-estimates the avail-bw as 10 Gbps—

the spike-dips pattern (Fig 2c) in the p-streams wipes out

any underlying trend of persistent queuing delays.

• V5 does not decouple the probing/adapting timescales—

both are the p-stream length. We consider N=64 and N=192.

(recall that in RAPID, probing timescale is N=64 and rate-

adapting timescale is N=192). We find that neither a shorter,

nor a longer timescale outperforms the decoupled RAPID. A

short timescale (N=64) suffers from noisy ABest—it fails to

fully utilize the empty path; while a long timescale (N=192)

increases the duration for which each p-stream overloads the

bottleneck, causing more losses. Also, bandwidth estimation

using N=192, γ=1 are less accurate than using N=64, γ=3.

Consequently, it yields less goodput.

To sum up, we find that each of the design components added

in this paper is critical for ensuring that RAPID achieves its

promised performance in practice.

VII. CONCLUDING REMARKS

This paper presents an ultra-high speed implementation of

TCP RAPID. We conduct evaluations to show that the imple-

mentation successfully tackles several real-world challenges

faced by the protocol and meets the performance bar set by

simulation-based evaluations. Even more fundamentally, the

networking community is generally skeptical about the practi-

cality of delay, rate, or bandwidth-based congestion control—

this paper takes a significant step in presenting evidence to

convince them otherwise.

8This is why V2 and V4 deceitfully offer higher goodput than RAPID on
idle paths (full RAPID is expected to under-estimate avail-bw within 10%).

For future work, we will continue to conduct intensive

evaluations—we hope to upgrade our end hosts and conduct

evaluations at truly 40 Gbps speeds. We also plan to deploy

our implementation within scientific applications, especially

in a wide-area setting. Besides, we are planning on eval-

uating our implementation in environments other than the

large bandwidth-delay product networks considered here—

specifically, data center environments, wireless environments,

as well as for wide-area streaming media applications.

REFERENCES

[1] Keith Winstein et al. Stochastic forecasts achieve high throughput and
low delay over cellular networks. In NSDI, 2013.

[2] Radhika Mittal et al. Timely: Rtt-based congestion control for the
datacenter. In SIGCOMM. ACM, 2015.

[3] Mayutan Arumaithurai et al. NF-TCP: A Network Friendly TCP
Variant for Background Delay-insensitive Applications. In International

Conference on Research in Networking. Springer, 2011.
[4] Shao Liu et al. Tcp-illinois: A loss-and-delay-based congestion control

algorithm for high-speed networks. Performance Evaluation, 65, 2008.
[5] Kun Tan et al. A Compound TCP Approach for High-speed and Long

Distance Networks. In Proc. IEEE INFOCOM, 2006.
[6] Andrea Baiocchi et al. YeAH-TCP: Yet Another Highspeed TCP. In

Proc. PFLDnet, volume 7, pages 37–42, 2007.
[7] Rebecca Lovewell et al. Packet-scale congestion control paradigm.

IEEE/ACM Transactions on Networking, 2016.
[8] Aleksandar Kuzmanovic et al. Tcp-lp: Low-priority service via end-

point congestion control. IEEE/ACM TON, 2006.
[9] Guojun Jin et al. System capability effects on algorithms for network

bandwidth measurement. In Proc. SIGCOMM. ACM, 2003.
[10] Vishnu Konda et al. RAPID: Shrinking the Congestion-control

Timescale. In Proc. INFOCOM. IEEE, 2009.
[11] Thomas E Anderson et al. Pcp: Efficient endpoint congestion control.

In NSDI, 2006.
[12] Yunhong Gu et al. Udt: Udp-based data transfer for high-speed wide

area networks. Computer Networks, 2007.
[13] Vinay Joseph Ribeiro et al. pathchirp: Efficient available bandwidth

estimation for network paths. In Proc. PAM, 2003.
[14] Manish Jain et al. Pathload: A measurement tool for end-to-end available

bandwidth. In Proc. PAM, 2002.
[15] Jacob Strauss et al. A measurement study of available bandwidth

estimation tools. In Proc. SIGCOMM. ACM, 2003.
[16] Hiroyuki Kamezawa et al. Inter-layer coordination for parallel tcp

streams on long fat pipe networks. In Proc. ACM/IEEE conference

on Supercomputing. IEEE, 2004.
[17] Antony Antony et al. Microscopic examination of tcp flows over

transatlantic links. Future Generation Computer Systems, 2003.
[18] Z-L Zhang et al. Small-time scaling behaviors of internet backbone

traffic: an empirical study. In Proc. INFOCOM. IEEE, 2003.
[19] Qianwen Yin et al. Can bandwidth estimation tackle noise at ultra-high

speeds? In Proc. ICNP. IEEE, 2014.
[20] David X Wei et al. Fast tcp: Motivation, architecture, algorithms,

performance. IEEE/ACM ToN, 14, 2006.
[21] Saverio Mascolo et al. Tcp westwood: Bandwidth estimation for

enhanced transport over wireless links. In Proc. MobiCom. ACM, 2001.
[22] Seong-Ryong Kang et al. Characterizing tight-link bandwidth of multi-

hop paths using probing response curves. In Proc. IWQoS. IEEE, 2010.
[23] Qianwen Yin et al. Can machine learning benefit bandwidth estimation

at ultra-high speeds? In Proc. PAM. Springer, 2016.
[24] Sea Shalunov et al. Low extra delay background transport (ledbat).

Technical report, 2012.
[25] Ryousei Takano et al. Design and evaluation of precise software pacing

mechanisms for fast long-distance networks. Proc. PFLDnet, 2005.
[26] Q. Yin et al. TCP Rapid: From Theory to Practice. Technical Report

17-001, Department of Computer Science, UNC Chapel Hill, 2017.
[27] Yashar Ganjali et al. Update on buffer sizing in internet routers.

SIGCOMM, 2006.
[28] P. Barford et al. Generating representative web workloads for network

and server performance evaluation. SIGMETRICS, 1998.
[29] Rebecca Lovewell et al. Impact of cross traffic burstiness on the packet-

scale paradigm. In LANMAN. IEEE, 2011.


