
An Examination of Bloom Filters and their

Applications

Jacob Honoroff

March 16, 2006

Outline

• Bloom Filter Overview

• Traditional Applications

• Hierarchical Bloom Filters Paper

• Less Traditional Applications & Extensions

1

Outline

• Bloom Filter Overview

• Traditional Applications

• Hierarchical Bloom Filters Paper

• Less Traditional Applications & Extensions

2

Bloom Filter Overview

“Space/Time Trade-offs in Hash Coding with Allowable Er-

rors”, Burton Bloom, Communications of the ACM, 1970.

Application example: Program for automatic hyphenation in

which 90% of words can be hyphenated using simple rules, and

10% require dictionary lookup.

3

Bloom Filter Principle

“Network Applications of Bloom Filters: A Survey” A. Broder,

M. Mitzenmacher, Allerton Conference on Communication,

Control, and Computing, 2002

“Whenever a list or set is used, and space is consideration, a

Bloom filter should be considered. When using a Bloom filter,

consider the potential effects of false positives.”

4

Notation

S is a set of n elements.

Set of k hash functions with range {1 . . . m} (or {0 . . . m − 1}).

m-long array of bits initialized to 0.

5

Families of Hash Functions

k hash functions h1 . . . hk

We could use SHA1, MD5, etc.

How could we get a family of size k?

hi(x) = MD5(x + i) or MD5(x ‖ i) would work.

6

Example

We insert and query on a Bloom filter of size m = 10 and number

of hash functions k = 3.

Let H(x) denote the result of the three hash functions which we

will write as a set of three values {h1(x), h2(x), h3(x)}

We start with an empty 10-bit long array:

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0

7

Insert x0:

H(x0) = {1,4,9}

0 1 2 3 4 5 6 7 8 9

0 1 0 0 1 0 0 0 0 1

Insert x1:

H(x1) = {4,5,8}

0 1 2 3 4 5 6 7 8 9

0 1 0 0 1 1 0 0 1 1

8

H(x0) = {1,4,9}

H(x1) = {4,5,8}

0 1 2 3 4 5 6 7 8 9

0 1 0 0 1 1 0 0 1 1

Query y0:

H(y0) = {0,4,8} −→ No

Query y1:

H(y1) = {1,5,8} −→ Yes (False Positive)

9

A Little Math (Broder & Mitzenmacher)

After n elements inserted into bloom filter of size m, probability

that a specific bit is still 0 is

(

1 −
1

m

)kn
≈ e−

kn
m

(The useful approximation comes from a well-known formula for

calculating e):

lim
x→∞

(

1 −
1

x

)−x
= e

Thus the probability that a specific bit has been flipped to 1 is

1 −

(

1 −
1

m

)kn
≈ 1 − e−

kn
m

10

Useful Approximation

x
(

1 − 1
x

)−x

4 3.160494
16 2.808404
64 2.739827

256 2.723610
1024 2.719610
4096 2.718614

16384 2.718365
65536 2.718303

262144 2.718287
1048576 2.718283
4194304 2.718282

11

A Little Math

A false positive on a query of element x occurs when all of the

hash functions h1 . . . hk applied to x return a filter position that

has a 1.

We assume hash functions to be independent.

Thus the probability of a false positive is

f =

(

1 −

(

1 −
1

m

)kn
)k

≈

(

1 − e−
kn
m

)k

12

Choose k To Minimize False Positives

We are given m and n, so we choose a k to minimize the false

positive rate.

Let p = e−
kn
m . Thus we have

f =

(

1 − e−
kn
m

)k

= (1 − p)k

= ek ln (1−p)

So we wish to minimize g = k ln (1 − p).

13

Choose k To Minimize False Positives

We could use calculus. Less messy, we notice that since

ln

(

e−
kn
m

)

= −
kn

m

we have

g = k ln (1 − p)

= −
m

n
ln (p) ln (1 − p)

and by symmetry, we see that g is minimized when p = 1
2

14

Choose k To Minimize False Positives

Since p = e−
kn
m , when p = 1

2 we have

k = ln2 ·

(

m

n

)

Plugging back into f = (1 − p)k, we find the minimum false

positive rate is
(

1

2

)k
≈ (.6185)

m
n

Caveat: k must be an integer.

15

Optimal Filter Structure

Recall p = e−
kn
m is the probability than any specific bit is still 0.

So p = 1
2 corresponds to a half-full Bloom filter array.

16

m, n, k Examples

From http://www.cs.wisc.edu/~cao/papers/summary-cache/

False positve rates for choices of k given m/n

m/n k k=1 k=2 k=3 k=4 k=5

2 1.39 0.393 0.400

3 2.08 0.283 0.237 0.253

4 2.77 0.221 0.155 0.147 0.160

5 3.46 0.181 0.109 0.092 0.092 0.101

6 4.16 0.154 0.0804 0.0609 0.0561 0.0578

7 4.85 0.133 0.0618 0.0423 0.0359 0.0347

8 5.55 0.118 0.0489 0.0306 0.024 0.0217

17

Outline

• Bloom Filter Overview

• Traditional Applications

• Hierarchical Bloom Filters Paper

• Less Traditional Applications & Extensions

18

Application: Weak Password Dictionary

“Opus: Preventing Weak Password Choices”, E. Spafford,

Computer and Security, 1991

Store dictionary of easily guessable passwords as bloom filter,

query when users pick passwords.

Can add new entries (e.g. previously used passwords).

19

Application: Weak Password Dictionary

What is a false positive in this context?

20

Application: Weak Password Dictionary

What is a false positive in this context?

A strong password that happens to hit. No big deal, just ask

user for another one.

21

Weak Password Dictionary Caveat

Normally, we don’t care about cryptographically strong hash

functions.

But if we store sensitive data (previously used passwords), we do

care, given attacker can see change in filter.

Solution: Use strong hash functions, or encrypt words before

entering.

22

Application: Traceback

“Hash-Based IP Traceback”, A. Snoeren et al., SIGCOMM,

2001

Developed “Source Path Isolation Engine” (SPIE)

600.424 Week 5 (Oct 10) related reading, remember?????

23

SPIE Traceback

Different goal than HBF authors:

“In an IP framework, the packet is the smallest atomic unit

of data. Any smaller division of data (a byte for instance) is

contained within a unique packet. Hence an optimal IP trace-

back system would precisely identify the source of an arbitrary

IP packet”.

24

SPIE Traceback

Hashes “invariant” fields of IP header and first 8 bytes of payload

into Bloom filter.

Explicitly handles fragmentation, NAT, ICMP messages (?), IP-

in-IP tunneling (?) and IPsec (?) using additional 64-bit data

structure

25

26

27

SPIE Bloom Filter Usage

Each router in path hashes packet digests into Bloom filters

which are paged and stored locally for some amount of time.

Key point: Each router’s hash functions are independent. They

are based on RNG seeded at each router and changed every page

out.

So false positives are independent of false positives at other

routers or at other time periods.

28

29

30

Application: Cache Sharing

“Summary Cache: A Scalable Wide-Area Web Cache Sharing

Protocol”, L. Fan et al., IEEE/ACM Transactions on Network-

ing, 2000.

Proxies on same side of network bottleneck share their caches.

Proxies use Internet Cache Protocol (ICP). Messages sent out

to all other proxies on cache misses.

Involves a lot of interproxy communication, adding to network

load.

31

Application: Cache Sharing

Proxy hashes all of the URLs in its cache into Bloom Filter.

Proxies periodically exchange Bloom filters, so queries of other

caches can be made locally without sending ICP message.

32

33

34

35

36

Application: Cache Sharing

Proxy hashes all of the URLs in its cache into Bloom Filter.

Proxies periodically exchange Bloom filters, so queries of other

caches can be made locally without sending ICP message.

What’s a false positive? Is it a big deal?

What’s a false negative? Is it a big deal?

37

38

39

40

41

42

43

False Positives / Negatives

False positive: Proxy A thinks Proxy B has URL U cached. A

asks for cached U, B responds back with “no”, A goes to actual

website.

False negative: Proxy A thinks nobody has URL U cached, so it

goes directly to website.

Result: a little extra traffic.

44

Problem: Deleting Items

Proxies remove pages from their cache, so they need to remove

items from the Bloom filter.

How do we do this?

45

No Deletion Support

Recall our example Bloom filter of two items:

H(x0) = {1,4,9}

H(x1) = {4,5,8}

0 1 2 3 4 5 6 7 8 9

0 1 0 0 1 1 0 0 1 1

Can’t delete one without clobbering the other since they share

address 4.

46

No Deletion Support

Delete x0:

H(x0) = {1,4,9}

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 1 0 0 1 0

Query x1:

H(x1) = {4,5,8} −→ No (False Negative)

47

Solution: Counting Filters?

In addition to storing bit at each address of filter, we store

counter for each position.

Counter is incremented on insertion and decremented on dele-

tion.

Bit in filter flipped when counter changes from 0 to 1 or 1 to 0.

In our example, we’d have the following counter array:

0 1 2 3 4 5 6 7 8 9

0 1 0 0 2 1 0 0 1 1

48

Counting Filters Issues

Counter Overflow? No chance! (kind of)

• Authors propose 4-bit counters enough

• In technical paper, with lots of math, show with 4-bit coun-

ters and k < ln 2 ·
(

m
n

)

, probability of overflow

≤ 1.37 × 10−15 × m

• If counter overflows, just keep it at max value

49

Counting Filters: More Generally

What if we insert and delete multiple copies of the same item into

a counting Bloom Filter? Can we reliably count the instances of

items in the filter?

50

Counting Filters: More Generally

What if we insert multiple copies of the same item into a Bloom

Filter? Can we use counting filters to count the instances of

items in the filter? NO!

We insert ≥ 16 times and delete 15 times, and have a resulting

false negative.

Recall: Summary Cache authors don’t care so much about false

negatives anyway.

We’ll see a cooler use of Bloom Filters as counters later.

51

Outline

• Bloom Filter Overview

• Traditional Applications

• Hierarchical Bloom Filters Paper

• Less Traditional Applications & Extensions

52

Hierarchical Bloom Filterss

“Payload Attribution via Hierarchical Bloom Filters”, K. Shan-

mugasundaram, et al., ACM CCS, 2004.

Use Bloom Filter extension to store portions of packets for the

purposes of payload attribution.

While SPIE is “packet digesting scheme”, their proposal is a

“payload digesting scheme”.

53

Applications

• We possess piece of virus, shellcode, etc., and want to see if

it was in any packets.

– “Fornet: A Distributed Forensics Network”

• Track unauthorized disclosure of sensitive information from

own network.

54

First Critique: Bad LATEX

Variables typeset like these are lame: offset, loffset

55

BBFs

To support substring matching in Bloom filters, the Block-Based

Bloom Filter (BBF) is introduced.

Payloads are broken into blocks of size s

Blocks are inserted along with their offset in payload:

(content||offset).

56

BBF example from paper

0 1 2 3 4 5 6

ABR ACA DAB RAC ADA RAC ABA

We query BRACADAB, giving three alignments of 2 blocks each

• BRA CAD: not found

• ACA DAB: found at offset 1

• RAC ADA: found at offset 3, half at 5

? “double false positive of the BBF” at offset 2 for RAC ADA ?

57

BBF Drawback

Two packets made up of blocks S0S1S2S3S4 and S0S2S3S1S4.

Query for S2S1 would be a false hit.

58

HBF example

S0S1S2S3|0

S0S1|0 S2S3|1

S0|0 S1|1 S2|2 S3|3

We get additional check to limit false positives when searching

for multiblock strings.

59

HBF: Small string drawbacks

For some small strings we still appear to have BBF style false

hit:

S0S1S2S3|0

S0S1|0 S2S3|1

S0|0 S1|1 S2|2 S3|3

S0S2S3S1|0

S0S2|0 S3S1|1

S0|0 S2|1 S3|2 S1|3

We still get false hit on S1S3 since hierarchy doesn’t capture

two-block strings at odd offsets.

60

Several HBFs Used to make Payload
Attribution System

• Block Digest (optional): hashes of (content) only

• Offset Digest: hashes of (content||offset). This is what

was described above

• Payload Digest: hashes of (content||offset||hostID).

61

Attribution

• Destination Attribution: “not affected by spoofing”.

– OK, but could get a lot of hits for internal worm/virus

trying to propagate out of network

• Local Source Attribution: Can be accurate up to local subnet

that HBF is in front of.

– OK, I buy this

62

Attribution

• Foreign Source Attribution: Handwaves at using other forms

of payload attribution that don’t rely on source IP address

– For connection oriented sessions, claim is can trust source

IPs.

– It seems that they don’t really deal with spoofed source

IPs: “...PAS suffers from denial of service attack as an

attacker can overflow the list of host IDs used for full

attribution”.

63

Attacks on PAS

• Splitting payload into packets smaller than blocksize

– Could make PAS stateful

• Stuffing payload with nops or equivalent

– HBFs make PAS more robust than packet digesting

• Some other less interesting issues are mentioned

64

Experimental Results: FPe and FPo

Basic False Positive Rates (FPo)

Blocks .3930 .2370 .1550 .1090 .0804

1 1.00000 .999885 .996099 .976179 .933179
2 .063758 .064569 .048981 .036060 .026212
3 .012081 .002620 .000744 .000275 .000172
4 .000820 .000230 .000060 .000020 -

> 4 - - - - -

65

Experimental Results: FPe and FPo

Basic False Positive Rates (FPo)

Blocks .3930 .2370 .1550 .1090 .0804

1 1.00000 .999885 .996099 .976179 .933179

2 .063758 .064569 .048981 .036060 .026212
3 .012081 .002620 .000744 .000275 .000172
4 .000820 .000230 .000060 .000020 -

> 4 - - - - -

Don’t use HBF to attribute blocks of length one!

66

BBF vs. HBF Under “Identical Memory
Footprint”

Query Blocks 2 3 4 5

BBF .049621 .035129 .000560 .000088
HBF .016547 .000720 .000110 0.0

Presumably, BBF is better for one-block strings (this makes

sense).

67

Tracking MyDoom

Searched for substrings of MyDoom virus in five days of traffic

from large network of thousands of hosts.

Block size of 32 bytes used.

“Incorrect attributions” given total of 25,328 actual attributions:

Length 96 128 160 192 224 256

Incorrect 1375 932 695 500 293 33

68

Useful Data?

The number of incorrect per correct is meaningless since Bloom

Filters do not allow false negatives

What about false positive rate? Disparity in charts?:

Length 96 128 160 192 224 256

Incorrect 1375 932 695 500 293 33

Basic False Positive Rates (FPo)

Blocks .3930 .2370 .1550 .1090 .0804

1 1.00000 .999885 .996099 .976179 .933179
2 .063758 .064569 .048981 .036060 .026212
3 .012081 .002620 .000744 .000275 .000172
4 .000820 .000230 .000060 .000020 -

> 4 - - - - -

69

Useful Data?

The number of incorrect per correct is meaningless since Bloom

Filters do not allow false negatives

What about false positive rate? Disparity in charts?:

Length 96 128 160 192 224 256

Incorrect 1375 932 695 500 293 33

Basic False Positive Rates (FPo)

Blocks .3930 .2370 .1550 .1090 .0804

1 1.00000 .999885 .996099 .976179 .933179
2 .063758 .064569 .048981 .036060 .026212
3 .012081 .002620 .000744 .000275 .000172
4 .000820 .000230 .000060 .000020 -

> 4 - - - - -

70

Comments on HBF paper

Fairly simple construction for including varying length substrings

in Bloom Filter.

Lots of handwaving about false positives.

Payload attribution not robust as long as it trusts source IPs.

71

Outline

• Bloom Filter Overview

• Traditional Applications

• Hierarchical Bloom Filters Paper

• Less Traditional Applications & Extensions

72

Using Bloom Filters to Measure Traffic
Flow

“Space-Code Bloom Filter for Efficient Per-Flow Traffic Mea-

surement”, A. Kumar, et al.,IEEE INFOCOM, 2004

We want to measure traffic flows. Flows can be defined by any

combination of features, such as:

• IP address

• Ports

• Protocols

73

Measuring Flows

How can we measure both small and large traffic flows accu-

rately?

• Counters? Does not scale for large flows and high link

speeds.

• Random Sampling (like 1%)? Innacurate, especially for small

flows.

74

Space-Code Bloom Filters

Measure approximate sizes of flows.

Note: Assume flow information is unencrypted.

We extend Bloom Filters, accepting some false positives in favor

of speed and memory savings.

Of course, we don’t use counting filters a la “Summary Cache”!

75

Space-Code Bloom Filters

Traditionally, we have set of hash functions h1, h2, . . . hk

A SCBF has l sets of k hash functions

h1
1, h1

2, . . . h1
k

h2
1, h2

2, . . . h1
k

...

hl
1, hl

2, . . . hl
k

When inserting element x, we choose one of l sets at random

and do normal BF insertion.

76

Space-Code Bloom Filters

When inserting element x, we choose one of l sets at random.

When querying element y, we iterate through all l sets of hash

functions, and count number that hit, yielding multiplicity value

θ̂,0 ≤ θ̂ ≤ l

We then use Maximum Likelihood Estimation (MLE) or Mean

Value Estimation (MVE) to estimate multiplicity of y.

77

Coupon Collector’s Problem

Given set of N elements, how many random samples do we ex-

pect before we hit all N?

Given that we’ve seen i elements, we will see a new element with

probability N−i
N . So we expect to need N

N−i samples before we

get the (i + 1)st element.

N

N
+

N

N − 1
+

N

N − 2
+ · · · +

N

1

N
N
∑

i=1

1

i
≈ N lnN

78

How do we Choose l

We expect all l sets of hash functions hit after ≈ l ln l insertions

of same element x.

For example l = 32, l ln l ≈ 111. So how do we differentiate 200

vs. 400 insertions?

Can’t make l arbitrarily large

79

Solution: Use Many l’s: MRSCBF!

Multi-Resolution SCBF.

We use r filters, each an SCBF. We associate probability of

insertion into each filter pi where p1 > p2 > ... > pr.

High pi are high-resolution filters, capture small flow information.

Low pi are low-resolution filters, capture large flow information.

Paper uses l = 32, pi = (.25)(i−1)

80

MRSCBF querying

Given a flow identifier, we compute all l functions on all r filters,

yielding the set of multiplicities θ̂1, θ̂2, . . . , θ̂r,

Doing MVE or MLE is too computationally complex

So we use “most relevant” filters

81

Most Relevant Example

Let actual multiplicity of x be 1000.

Filter at resolution 1 will have θ̂ = l

Filter at resolution 1
1024 will have θ̂ tiny, like 0 or 1

Probably best to use filter around 1
16 or so.

82

Formalize Most Relevant Filter

If x matches θ hash groups, it would take about l
l−θ to match

another hash group

The expected number of insertions given θ matches is
(

l

l
+

l

l − 1
+ · · · +

l

l − θ + 1

)

Define relative incremental inaccuracy as

l
l−θ

(

l
l +

l
l−1 + · · · + l

l−θ+1

)

and choose filter with smallest inaccuracy

83

SCBF Takeaway

Very cool way of using Bloom filters as counters.

Addresses the problem of “Summary Cache” counting filters

which couldn’t effectively deal with multiple copies of the same

data item.

84

Fabian’s Extension: Privacy Preserving
Observations

Interesting applications when many people have access to ap-

proximate counts of items.

Alice is interested in Bob’s count of item X, but doesn’t want

to reveal her interest in X.

From Bob’s count of a different, uninteresting item Y she can

estimate his count of X.

So she asks for the count on Y and then deduces an approximate

count for X.

85

Bloomier Filters

“The Bloomier Filter: An Efficient Data Structure for Static

Support Lookup Tables”, B. Chazelle, et al., ACM/SIAM Sym-

posium on Discrete Algorithms (SODA), 2004

Associate a function value with f with each element in domain

D of size N such that:

• Range R of f is size 2r = {⊥,1, . . . ,2r − 1} where ⊥ means

undefined.

• Subset S ⊆ D of size n such that f is defined for x ∈ S and

f(x) =⊥ for x /∈ S

86

Bloomier Filters: More Concretely

Let xi be a set of elements separated into non-intersecting sub-

sets Ai. For example:

A0 = x0, . . . , x9

A1 = x10, . . . , x19

A2 = x20, . . . , x29
...

A Bloomier filter allows us to query an element y and guarantees

the correct subset Ai if y ∈ Ai for some i. If y /∈ Ai for all i, we

should get ⊥ unless we hit a false positive.

87

Extra Notation

Any element of range R can be encoded as a q-bit binary number

in the additive group Q = {0,1}q. It is important that 2q > |R|.

We still have k hash functions h1, . . . , hk which return a value in

range 1, . . . , m. In addition, we have one additional q-bit “mask-

ing value” M returned by hashing.

We define the “neighborhood” N(t) of t ∈ S as the results of

the k hash functions, {h1(t), . . . , hk(t)}

Let Π be a total ordering on the elements of S.

88

Immutable Table

The idea is to store f(t) in the addresses of the table

{h1(t), . . . , hk(t)}

such that

f(t) = M ⊕
k
⊕

i=1

Table [hi (t)]

The trick will be to figure out which address hi (t) to update

for each element t so that we don’t clobber another element’s

stored value.

89

Walk Through Ordering Example

We’ll work through an example of creating an Immutable Bloom

filter for the following parameters:

k = 4

m = 10

q = 8

n = 4

|R| = 4

Where the range of f is the four values 0x11, 0x22, 0x44, 0x88

We will call the four elements of S {A, B, C, D}

90

Walk Through Ordering Example

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 ? ?

B 0x22 0xeb 1,3,8,9 ? ?

C 0x44 0x07 1,6,8,9 ? ?

D 0x88 0x2c 2,3,8,7 ? ?

f : Function value we want to store

M : Radom Mask computed from hashing

Neighborhood: The set of addresses computed from hashing

τ : The member of the Neighborhood which we will update

Π: The order in which we insert

91

Walk Through Ordering Example

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 ? ?

B 0x22 0xeb 1,3,8,9 ? ?

C 0x44 0x07 1,6,8,9 ? ?

D 0x88 0x2c 2,3,8,7 ? ?

f : Function value we want to store

M : Radom Mask computed from hashing

Neighborhood: The set of addresses computed from hashing

τ : The member of the Neighborhood which we will update

Π: The order in which we insert

92

Walk Through Ordering Example

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 ? ?

B 0x22 0xeb 1,3,8,9 ? ?

C 0x44 0x07 1,6,8,9 ? ?

D 0x88 0x2c 2,3,8,7 2 4

f : Function value we want to store

M : Radom Mask computed from hashing

Neighborhood: The set of addresses computed from hashing

τ : The member of the Neighborhood which we will update

Π: The order in which we insert

93

Walk Through Ordering Example

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 ? ?

B 0x22 0xeb 1,3,8,9 ? ?

C 0x44 0x07 1,6,8,9 ? ?

D 0x88 0x2c 2,3,8,7 2 4

f : Function value we want to store

M : Radom Mask computed from hashing

Neighborhood: The set of addresses computed from hashing

τ : The member of the Neighborhood which we will update

Π: The order in which we insert

94

Walk Through Ordering Example

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 7 3

B 0x22 0xeb 1,3,8,9 ? ?

C 0x44 0x07 1,6,8,9 ? ?

D 0x88 0x2c 2,3,8,7 2 4

f : Function value we want to store

M : Radom Mask computed from hashing

Neighborhood: The set of addresses computed from hashing

τ : The member of the Neighborhood which we will update

Π: The order in which we insert

95

Walk Through Ordering Example

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 7 3

B 0x22 0xeb 1,3,8,9 ? ?

C 0x44 0x07 1,6,8,9 ? ?

D 0x88 0x2c 2,3,8,7 2 4

f : Function value we want to store

M : Radom Mask computed from hashing

Neighborhood: The set of addresses computed from hashing

τ : The member of the Neighborhood which we will update

Π: The order in which we insert

96

Walk Through Ordering Example

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 7 3

B 0x22 0xeb 1,3,8,9 3 1

C 0x44 0x07 1,6,8,9 6 2

D 0x88 0x2c 2,3,8,7 2 4

f : Function value we want to store

M : Radom Mask computed from hashing

Neighborhood: The set of addresses computed from hashing

τ : The member of the Neighborhood which we will update

Π: The order in which we insert

97

Building the Bloomier Filter

0 1 2 3 4 5 6 7 8 9

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 7 3

B 0x22 0xeb 1,3,8,9 3 1

C 0x44 0x07 1,6,8,9 6 2

D 0x88 0x2c 2,3,8,7 2 4

98

Building the Bloomier Filter

0 1 2 3 4 5 6 7 8 9

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 7 3

B 0x22 0xeb 1,3,8,9 3 1

C 0x44 0x07 1,6,8,9 6 2

D 0x88 0x2c 2,3,8,7 2 4

Table [τ(B)] = f(B) ⊕ M(B) ⊕
4
⊕

i=1

Table [hi (B)]

Table [3] = 0x22⊕ 0xeb

= 0xc9

99

Building the Bloomier Filter

0 1 2 3 4 5 6 7 8 9

0x00 0x00 0x00 0xc9 0x00 0x00 0x00 0x00 0x00 0x00

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 7 3

B 0x22 0xeb 1,3,8,9 3 1

C 0x44 0x07 1,6,8,9 6 2

D 0x88 0x2c 2,3,8,7 2 4

Table [τ(C)] = f(C) ⊕ M(C) ⊕
4
⊕

i=1

Table [hi (C)]

Table [6] = 0x44⊕ 0x07

= 0x43

100

Building the Bloomier Filter

0 1 2 3 4 5 6 7 8 9

0x00 0x00 0x00 0xc9 0x00 0x00 0x43 0x00 0x00 0x00

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 7 3

B 0x22 0xeb 1,3,8,9 3 1

C 0x44 0x07 1,6,8,9 6 2

D 0x88 0x2c 2,3,8,7 2 4

Table [τ(A)] = f(A) ⊕ M(A) ⊕
4
⊕

i=1

Table [hi (A)]

Table [7] = 0x11⊕ 0x54⊕ 0xc9⊕ 0x43

= 0xcf

101

Building the Bloomier Filter

0 1 2 3 4 5 6 7 8 9

0x00 0x00 0x00 0xc9 0x00 0x00 0x43 0xcf 0x00 0x00

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 7 3

B 0x22 0xeb 1,3,8,9 3 1

C 0x44 0x07 1,6,8,9 6 2

D 0x88 0x2c 2,3,8,7 2 4

Table [τ(D)] = f(D) ⊕ M(D) ⊕
4
⊕

i=1

Table [hi (D)]

Table [2] = 0x88⊕ 0x2c⊕ 0xc9⊕ 0xcf

= 0xa2

102

Building the Bloomier Filter

0 1 2 3 4 5 6 7 8 9

0x00 0x00 0xa2 0xc9 0x00 0x00 0x43 0xcf 0x00 0x00

f M Neighborhood τ Π

A 0x11 0x54 1,3,6,7 7 3

B 0x22 0xeb 1,3,8,9 3 1

C 0x44 0x07 1,6,8,9 6 2

D 0x88 0x2c 2,3,8,7 2 4

103

Why do we Need M?

M , the “masking value” is used to eliminate false positives by

effectively randomizing lookup misses.

We have 2q > |R|, so that f(y) =⊥, y /∈ S with probability
|R|
2q

Easy example: 0 ∈ R, and we don’t use a mask M . With a table

initialized to 0, lookups that hit addresses with no values (or

values that sum to 0) would be false positives.

104

Why we Need M

0 1 2 3 4 5 6 7 8 9

0x00 0x00 0x01 0x02 0x00 0x00 0x03 0x04 0x00 0x00

R = {0,1,2,3,4}

N(y) = {1,4,5,9} for y /∈ S

y is now a false positive.

105

“Mutable” Bloomier Filter

We use an extra table and one level of redirection so that we

can update f(t) for any t ∈ S.

Instead of storing f(t) in the first table, we store the value i ∈

{1, . . . , k} for which hi(t) = τ(t).

Then in second table, we store f(t) in TABLE2 [τ(t)].

106

So What’s the Catch?

There is (at least) one major downside to Bloomier filters. Did

you catch it?

107

Major Downside of Bloomier Filters

“Mutable” Bloomier filter refers to being able to update f(t)

for t ∈ S. Membership in S cannot change; the set S itself is

immutable.

• Must know entire set S upon creation

• Cannot update filter with new elements after its creation

This would seem to severely limit its practical use.

108

Conclusions

Bloom Filters and their extensions are useful tools for a variety

of applications in the field of security.

I happen to think HBFs are not among the coolest applications.

Again, the Bloom Filter Principle: “Whenever a list or set

is used, and space is consideration, a Bloom filter should be

considered. When using a Bloom filter, consider the potential

effects of false positives.”

109

Matchings: More Notation

We say a matching τ respects (S, π, N) if

• for all t ∈ S, τ(t) ∈ Nt

• if ti >Π tj then τ(ti) /∈ N(tj)

In English, if we have τ(t) for all t ∈ S, then this gives an address

in every element’s neighborhood for which we can update the

table without clobbering any previously entered data!

110

Finding the Ordering Π and Matching τ

We say h ∈ {1 . . . m} is a singleton if h ∈ N(t) for a unique t ∈ S.

We use the term TWEAK(t, S,HASH) to refer to the smallest

singleton of t (so that we have a defined one to pick in case t

has multiple singletons).

If every t had a singleton, we’d be fine, we could use τ(t) =

TWEAK(t, S,HASH).

111

Find Singletons Recursively

1. For all t with a singleton, set τ(t) = TWEAK(t, S,HASH). .

2. Remove all these elements with singletons from S.

3. Put these elements in Π after those still in S but before those

currently in Π

4. Repeat until all elements are ordered. We fail if their are

elements left with no singletons.

112

