
COMP 242 Class Notes
Handout 2: Process Management

1 Scheduling and Context Switching

Reading chapters 3,4,5 Comer.
We saw earlier that an operating system gives the illusion of concurrency in a single processor system

by switching the CPU among different processes, running one for a period of time before moving to another.
We now study two components of this switching:

Context Switching, which consists of stopping one process and starting a new one.
Scheduling, which consists of choosing a new process among the processes that are eligible for execu-

tion.

1.1 Xinu Scheduling Policy

A scheduling policy determines how a new process is chosen for execution. The policy should be dis-
tinguished from the mechanism used to enforce it. We describe here the Xinu scheduling policy. The
mechanisms are described later.

The Xinu scheduling policy has three components:
Each process is associated with a priority.
The highest priority ready process is always chosen for execution.
Among processes with equal priority scheduling is round-robin. By round-robin we mean that pro-

cesses are selected one after another so that all members of a set have an opportunity to execute before any
member has a second chance.

1.2 Process Table

The process table is a data structure maintained by the operating system to facilitate context switching
and scheduling, and other activities discussed later. Each entry in the table, often called a context block,
contains information about a process such as process name and state (discussed below), priority (discussed
below), registers, and a semaphore it may be waiting on (discussed later). The exact contents of a context
block depends on the operating system. For instance, if the OS supports paging, then the context block
contains an entry to the page table.

In Xinu, the index of a process table entry associated with a process serves to identify the process, and
is known as the process id of the process.

1.3 Process State

The system associates a process with a state, which helps it keep track of what the process is doing. Two
of these states, used for context switching and scheduling, are current and ready. Other states will be
discussed later.

The single process currently receiving CPU service is in the current state; other processes eligible for
CPU service are in the ready state (Some processes are not eligible for CPU service, for instance a process
waiting on a semaphore).

1



1.4 Xinu Mechanism for Context Switching and Scheduling

The Xinu mechanism for context switching and scheduling consists of three components, which are de-
scribed below.

1.4.1 Ready List

The ready processes in the system are kept in a ‘queue’ called the ready list. This list is sorted by the
priority of the processes; the lowest priority process appears at the head of the list and the highest priority
process is at the tail. Processes of the same priority are sorted by the order in which they are to get service.
Thus when a new process is inserted, it is inserted not at the end of the list, but at a point determined by its
priority. The current process is not on this list, its id is stored in a global integer variable called currpid.

1.4.2 resched

resched is a routine that is called by the current process when rescheduling is to take place. It is called not
only when the time quantum of the current process expires but also when a blocking call such as wait is
invoked by the current process or when a new process (of potentially higher priority) becomes eligible for
execution. (We shall discuss later the exact conditions that determine when a rescheduling takes place)

The routine does the following:
Choosing a New Process: It chooses the new process to execute based on the scheduling policy described

above. Thus it looks at the process at the tail of the ready list. If the priority of this process is lower than
the priority of the current process, then the current process, if it is executable, retains control of the CPU
and the routine returns. (The scheduling policy dictates that a lower priority process in the ready list will be
executed only if there are no higher priority processes in the list). Otherwise the process at the tail of the
process is chosen as the new process and the following steps are taken.

Change of State of New Process: The new process is removed from the ready list, its state is changed
from ready to current.

Allocation of Time: The new process is is allocated a time interval to execute (we shall study later how
this is done). This time interval is the maximum time it will execute control before rescheduling takes place.

Change of State of Old Process: The routine resched is never called directly by the user process. It is
called indirectly by some other system provided routine such as wait on a semaphore. This routine may
change the state of the process. For instance wait changes the state of process to wait (as we will discuss
later). At the point resched is called, the process is executable only if its state is still current. resched uses
this information to determine if the old process needs to be put in the ready list. If the state is current it
changes it to ready and inserts the process behind other processes with the same priority (so that it is picked
last among processes with the same priority, thus ensuring round robin scheduling among processes with the
same priority), and in front of processes with lower priority (so that a higher priority process is scheduled
before a lower priority one). Otherwise it leaves the process untouched since some other routine took care
of changing the state of the process and putting it in an appropriate list.

Call to ctxsw: Finally the routine ctxsw (discussed below) is called. This routine does work that cannot
be done in a high level language (compared to assembly language) like C.

1.4.3 ctxsw

The routine ctxsw, described in the text (pg 60), does the following:
Saves the registers of the old process in the process table entry for it. Registers R1-R5, the stack pointer,

the program counter, and the process status are all saved. (Compare this with register saves in a procedure

2



call) It has to be careful while saving a value for the PC. It does not save the address of any of the remaining
instructions in ctxsw (why?). Instead, it saves the return address of ctxsw. Thus, when the old process
is resumed, it starts executing after the statement in Resched that calls ctxsw. The stack pointer must be
adjusted to make it look as if a return from ctxsw occurred. In the LSI version, this is done by popping the
return address from the stack. The parameters will be popped by the calling procedure.

Loads the registers of the new process from the saved values in the process table entry for it. In particular,
loads the saved stack pointer of the new process’s context block, switching stacks. Again, care has to be
taken with the program counter. This register can be loaded only after the rest of the state has been restored.
The routine uses the rtt instruction to transfer return control to the new process. This instruction loads the
PC and PS from values saved in the stack. Thus ctxsw makes sure that these values are pushed on the
(new process’s) stack before rtt is called. (What routine will the new process be executing when control is
transferred to it?)

1.4.4 The Null Process

The code in Resched, when deciding on a new process to execute, does not bother to verify if the ready list
is empty. It assumes that one process is always available. To ensure that a ready process always exists, Xinu
creates an extra process, called the null process, when it initializes the system. This process has process id
0, its code consists of an infinite loop, and it has priority zero (why?).

2 Process Resumption and Suspension

Process suspension and resumption are used to temporarily stop a process from executing and then restart
it again.

2.1 Semantics

A process may suspend itself or another process may suspend it.
A process to be suspended should be in the ready or current state.
Suspended processes go into the suspended state.
A process can be resumed only if it is in the suspended state.
A resumed process goes to the ready state (why not to the current state?)
The resume call returns the priority of the suspended process at the time that resume was called.
The suspend call returns the priority of the suspended process just before suspend terminates.
The reasons for returning priorities are obscure, but the fact that the priority of a process can change

during a system call is interesting.
Look at transition diagram in figure 5.1 in the text book.

2.2 Implementation

Process resumption and suspension are implemented by the procedures resume and suspend respectively.

2.2.1 Procedure resume

Takes as argument the process id of the process to be resumed.
Returns an error value if argument is not a valid process id or is not in the suspended state.
Puts the process in the ready list.
Asks for rescheduling. (why?)

3



Stores the value of the priority of the resumed process before the process is rescheduled (why does this
value have to be stored?).

Disables interrupts while accessing the process table to read the priority of the resumed process. If
interrupts are not disabled, a clock interrupt may ask for rescheduling. Thus some other process may change
the priority of the resumed process before the resuming process has a chance to read the priority.

2.2.2 Procedure suspend

Takes as argument the process id of process to be suspended.
Returns an error value if process id is invalid or process is not in the ready or current state. Otherwise

returns the priority of the process just before suspend terminates.
Changes state of process to suspended.
If process is in the ready state it is removed from the ready list. (Should it put the process in some other

list?)
If process is in the current state, it calls resched (why?).
disables interrupts while accessing process table.

3 Process Termination

A process may terminate a) when it finishes execution of its procedure or b) as a result of a kill request made
by the same or another process.

Process termination involves releasing resources held by the process and removing all traces of it.

3.1 Implementation

The procedure kill handles both kinds of process termination. It may be explicitly called by a process that
makes a kill request or it may be called implicitly when a process terminates normally.

3.1.1 Tasks Performed

(Error checking, ensuring mutual exclusion while accessing process table, and other functions common to
resume and suspend will not be mentioned in the remaining implementation descriptions)

returns stack space.
frees process table entry, making it available for reuse.
remove process from any list it is on,
increments semaphore count if necessary,
reschedules if process killed itself. reschedule needs the “freed” process stack for passing arguments to

ctxsw. Fortunately, this is not a problem, since interrupts are disabled between the time the stack is freed
and ctxsw finishes processing the arguments. As a result, the freed stack will not be overwritten by another
process while the arguments are accessed.

4 Process Creation

An existing process requests for a new process to be created.
The new process does not begin execution but is in the suspended state.

4



4.1 Implementation

Implemented by routine create (procaddr, ssize, priority, name, nargs, args).

4.2 Arguments:

procedure to be executed
stack size
priority
name
number of args and args

4.3 Tasks Done

Create stack space
Create process table entry
Fill priority, name, registers and other fields of process table entry. (what values should the PC and

initial state contain?)
Simulate a call to procedure to be executed. Copy arguments to the stack of the new process and fill

return address of a routine (userret) that calls the kill procedure. Thus kill also handles normal termination.
Returns process id.

5 System Calls

These are procedure calls that a user program may make to access the services provided by the OS. So far
we have seen four system calls: create, kill, resume, and suspend. It provides other calls that also have to do
with process management,

5.0.1 Getpid

This routine returns the process id of the process making the calls.

5.0.2 Getprio (pid)

Returns the priority of a process.

5.0.3 Chprio (pid, newprio)

Change the priority of a process.

6 Need for Multiprocessing

These calls have obvious implementations, except perhaps the chprio call, which you will be implementing
in your assignment.

Why do we need multiprocessing, when computation, instead of being speeded, may actually be slowed
down in a single processor system (because of context switching overhead and overhead of making system
calls such as create and terminate)? Why is sequential processing not sufficient?

Multiprocessing is useful for several reasons, which are discussed below.

5



6.1 Time Sharing

In the absence of multiprocessing, a single application is run at a time. Thus a single user is serviced at
a time. Multiprocessing is necessary for time sharing systems, which allow several users to get service
simultaneously.

6.2 Different Applications per User

It is also useful to have several applications running simultaneously on behalf of the same user. For instance
an editor and a compiler could run together. The editor could be higher priority so that the compiler runs
only when the editor is waiting for user input.

6.3 Several Processes per Application

A single application can be broken up into several parts, each one associated with a separate process. This
division of labour often makes the program easier to write. As an example consider a screen manager
that displays several windows simultaneously and accepts user input from each window. In a sequential
processing system, exactly one process is assigned to this application. It would maintain a “context block”
for each window and “switch” among these blocks based on user input. The program for this process would
look as follows:

initialize all windows.
loop

wait for user input
determine the window to which it applies
load state of window
service input
save state

end loop

In a multiprocess system, a process could be associated with each window. The state of a window is
stored in the variables of its process, and the operating system is responsible for saving and restoring this
state and switching among the processes. Moreover, it can support urgent windows (“abort missile launch”)
by giving higher priority to processes that manage them. Thus each process is concerned only with servicing
input, and not with saving and restoring state.

Perhaps more compelling examples are found in the Web context. Multiprocessing allows a Web browser
to execute different animations (shown on a Web page) as separate threads. In the absence of multithreading,
the browser would be responsible for context switching between the animations. Similarly, multiprocessing
allows an HTTP server to execute different pieces of user-supplied code as independent threads or ”servlets”.

6.4 Concurrent Computing

The different processes can execute on different computers in a multiprocessing system. Thus computation
may be speeded up. As an example consider a checkers-playing application that evaluates different board
positions. Each board position could be evaluated by a different process running on a different computer.
Similarly, independent animations can be executed concurrently by different processors.

6


