Degree-Driven Algorithm Design for Computing Volumes of CSG Models

David L. Millman
Jack Snoeyink

Department of Computer Science - UNC-Chapel Hill

June 19, 2012

Motivation and Background

Image from Idaho National Lab, Flickr

Image from:T.M. Sutton, et. al., The MC21 Monte Carlo Transport Code, Proceedings of (M\&C + SNA 2007)

Volume Calculation Framework Overview

Basic idea: Divide-and-conquer.
Use an octree to decompose space into boxes, determining the surfaces affecting each box, stopping when the box is small enough or surfaces are simple enough that we can approximate volume accurately.

Our contribution: Framework that computes each component's volume in multi-comp. CSG models.
Based on a minimal, extensible set of predicates that handles any model \& is very efficient on common cases.

Algorithm	Error	Time (sec)
Old	$<\mathbf{1 e - 5}$	$\mathbf{7 9 0 . 2 8}$
New	$<\mathbf{1 e - 6}$	$\mathbf{1 . 4 1}$

Primitives:
 Signed Quadratic Surfaces

$$
\begin{gathered}
f(x, y, z)<a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2} \\
+a_{4} x y+a_{5} x z+a_{6} y z \\
+a_{7} x+a_{8} y+a_{9} z+a_{10}
\end{gathered}
$$

Model Representation Basic Component: Boolean Formula

A basic component defined by intersections and unions of signed surfaces

$$
\left(-S_{\text {blue }} \cap S_{\text {grey }} \cap S_{\text {green }} \cap-S_{\text {orange }}\right) \cup-S_{\text {yellow }}
$$

Model Representation Component Hierarchy: Boolean Formulae

Basic comp: $B(N), \cup$ and \cap of signed surfs.

Model Representation Component Hierarchy: Boolean Formulae

Basic comp: $B(N), \cup$ and \cap of signed surfs.
Restricted comp: $R(N)=B(N) \cap R\left(N_{p}\right)$

Model Representation Component Hierarchy: Boolean Formulae

Basic comp: $B(N), \cup$ and \cap of signed surfs.
Restricted comp: $R(N)=B(N) \cap R\left(N_{p}\right)$
Hierarchical comp: $H(N)=R(N) \backslash \sum_{i} R\left(N_{c i}\right)$

Operations on Primitives

Operations on signed surface S with point or box:

- Point inside - return if query point is inside S.

- Integrator - return the intersection volume of the interior of S with an axis-aligned box.

Analyzing Precision [LPT99]

Point inside - return if query point is inside S.

$$
\begin{aligned}
& p=\left(p_{1}, p_{2}, p_{3}\right) \\
& s=\left(s_{1}, s_{2}, \ldots, s_{10}\right) \\
& p_{i}, s_{i} \in\{-U, \ldots, U\}
\end{aligned}
$$

pointInside (S, p)

Analyzing Precision [LPT99]

Point inside - return if query point is inside S.

$$
\begin{aligned}
& p=\left(p_{1}, p_{2}, p_{3}\right) \\
& s=\left(s_{1}, s_{2}, \ldots, s_{10}\right) \\
& p_{i}, s_{i} \in\{-U, \ldots, U\}
\end{aligned}
$$

pointInside $(\mathrm{s}, p)=\operatorname{sign}\left(\mathrm{s}_{1} p_{1}^{2}+s_{2} p_{2}^{2}+s_{3} p_{3}^{2}\right.$

$$
\begin{aligned}
& +s_{4} p_{1} p_{2}+s_{5} p_{1} p_{3}+s_{6} p_{2} p_{3} \\
& \left.+s_{7} p_{1}+s_{8} p_{2}+s_{9} p_{3}+s_{10}\right)
\end{aligned}
$$

Analyzing Precision [LPT99]

Point inside - return if query point is inside S.

$$
\begin{aligned}
& p=\left(p_{1}, p_{2}, p_{3}\right) \\
& s=\left(s_{1}, s_{2}, \ldots, s_{10}\right) \\
& p_{i}, s_{i} \in\{-U, \ldots, U\}
\end{aligned}
$$

pointInside $(\mathrm{s}, p)=\operatorname{sign}\left(\mathrm{s}_{1} p_{1}^{2}+s_{2} p_{2}^{2}+s_{3} p_{3}^{2}\right.$

$$
\begin{gathered}
+s_{4} p_{1} p_{2}+s_{5} p_{1} p_{3}+s_{6} p_{2} p_{3} \\
\left.+s_{7} p_{1}+s_{8} p_{2}+s_{9} p_{3}+s_{10}\right) \\
=\operatorname{sign}(3)
\end{gathered}
$$

Box classification test

Box classification - return if the points of an axis-aligned box are inside, outside or both with respect to S.

$$
\begin{aligned}
& b=\left(b_{1}, p_{2}, \ldots, p_{6}\right) \\
& s=\left(a_{1}, a_{2}, \ldots, a_{10}\right) \\
& b_{i}, s_{i} \in\{-U, \ldots, U\}
\end{aligned}
$$

classify (s, b)
(1) check if any vertices of b are on different sides of s. -- Degree 3
(2) check if any edge of b intersect s. -- Degree 4
(3) check if any face of b intersects s. -- Degree 5

Face test

Test if a face f intersects S.

Let \mathbf{c} be the intersection curve of the plane P containing the face and s.

$$
c(x, y)=\left(\begin{array}{lll}
x & y & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & (2) \\
1 & 1 & (2) \\
2 & (2) & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

Face test

Test if a face f intersects S.

Let \mathbf{c} be the intersection curve of the plane P containing the face and s.

$$
c(x, y)=\left(\begin{array}{lll}
x & y & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & (2) \\
1 & 1 & 2 \\
2 & (2) & (3)
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

To determine if S intersects the face test properties of the matrix.
Test if c is an ellipse: $\quad \operatorname{sign}\left(\left|\begin{array}{cc}\left|\begin{array}{cc}1 & 1 \\ 1) & 1\end{array}\right|\end{array}\right|\right)=$ (2)
Test if c is real or img: sign $\left(\left.\begin{array}{ccc}\left\lvert\, \begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right. & (2) \\ 1 & (1) & 2 \\ 2 & (2) & 3\end{array} \right\rvert\,\right)=(5)$

Face test

Test if a face f intersects S.

Let \mathbf{c} be the intersection curve of the plane P containing the face and s.

$$
c(x, y)=\left(\begin{array}{lll}
x & y & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & (2) \\
1 & 1 & 2 \\
2 & (2) & (3)
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

To determine if S intersects the face test properties of the matrix.
Test if c is an ellipse: $\quad \operatorname{sign}\left(\left|\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right|\right)=(2)$
Test if c is real or img: $\operatorname{sign}\left(\left.\begin{array}{ccc}\mid 1 & 1 & (2) \\ 1 & 1 & (2) \\ (2) & (2) & (3)\end{array} \right\rvert\,\right)=(5)$
Can we reduce the box test to degree 4?

Experiment: Accuracy and Time

Algorithm	Requested Accuracy	Error	Time (sec)
Old	$\mathbf{1 e - 4}$	$<\mathbf{1 e - 5}$	$\mathbf{7 9 0 . 2 8}$
New	$\mathbf{1 e - 4}$	$<\mathbf{1 e - 6}$	$\mathbf{1 . 4 1}$

Conclusion

Current challenges:

- Lower degree box classification
- Tighter error bounds
- Translating other problems from reactor physics into the language of computational geometry.

Contact:
David L. Millman
dave@cs.unc.edu
http://cs.unc.edu/~dave

Model Operations
 Component Hierarchy: Boolean Formulae

Operations for a comp. hierarchy:

- Point location - return the hierarchical component containing a point.

- Formula restricted to a box - given an axis aligned box b, a Boolean formula F and the classification for all surfs of F for b, replace all surfs of F in which b is completely inside or outside with True or False respectively.

Model Operations Component Hierarchy: Boolean Formulae

- Formula restricted to a box - given an axis aligned box b, a Boolean formula F and the classification for all surfs of F for b, replace all surfs of F in which b is completely inside or outside with True or False respectively.
$\left(-S_{\text {blue }} \cap S_{\text {grey }} \cap S_{\text {green }} \cap-S_{\text {orange }}\right) \cup-S_{\text {yellow }}$

Model Operations Component Hierarchy: Boolean Formulae

- Formula restricted to a box - given an axis aligned box b, a Boolean formula F and the classification for all surfs of F for b, replace all surfs of F in which b is completely inside or outside with True or False respectively.
$\left(-S_{\text {blue }} \cap S_{\text {grey }} \cap S_{\text {green }} \cap-S_{\text {orange }}\right) \cup-S_{\text {yellow }}$
$\left(T \cap S_{\text {grey }} \cap S_{\text {green }} \cap \quad T \quad\right) \cup \quad F$

Model Operations Component Hierarchy: Boolean Formulae

- Formula restricted to a box - given an axis aligned box b, a Boolean formula F and the classification for all surfs of F for b, replace all surfs of F in which b is completely inside or outside with True or False respectively.
$\left(-S_{\text {blue }} \cap S_{\text {grey }} \cap S_{\text {green }} \cap-S_{\text {orange }}\right) \cup-S_{\text {yellow }}$
$\left(T \cap S_{\text {grey }} \cap S_{\text {green }} \cap \quad T \quad\right) \cup \quad F$

$$
\left(S_{\text {grey }} \cap S_{\text {green }}\right)
$$

Surface-in-Box Integrators

Given a component hierarchy, axis-aligned box b, and target error ε and confidence δ, an integrator either computes volumes of each
hierarchical comp's intersection with B to within ε and δ, or flags B as "needs subdivision."

Basic integrators:

- Monte Carlo Integrator (MC)
- Box Integrator (Box)

Advanced integrators:

- Pair of Planes Integrator (2Plane)

- Bundle of Cylinders Integrator (BunCyl)

Surface-in-Box Integrators

Given a component hierarchy, axis-aligned box b, and target error ε and confidence δ, an integrator either computes volumes of each
hierarchical comp's intersection with B to within ε and δ, or flags B as "needs subdivision."

Basic integrators:

- Monte Carlo Integrator (MC)
- Box Integrator (Box)

Advanced integrators:

- Pair of Planes Integrator (2Plane)
- Bundle of Cylinders Integrator (BunCyl)

Surface-in-Box Integrators

Given a component hierarchy, axis-aligned box b, and target error ε and confidence δ, an integrator either computes volumes of each
hierarchical comp's intersection with B to within ε and δ, or flags B as "needs subdivision."

Basic integrators:

- Monte Carlo Integrator (MC)
- Box Integrator (Box)

Advanced integrators:

- Pair of Planes Integrator (2Plane)

- Bundle of Cylinders Integrator (BunCyl)

Surface-in-Box Integrators

Given a component hierarchy, axis-aligned box b, and target error ε and confidence δ, an integrator either computes volumes of each
hierarchical comp's intersection with B to within ε and δ, or flags B as "needs subdivision."

Basic integrators:

- Monte Carlo Integrator (MC)
- Box Integrator (Box)

Advanced integrators:

- Pair of Planes Integrator (2Plane)

- Bundle of Cylinders Integrator (BunCyl)

Algorithm Animation

$M C_{2}^{21:}$

Algorithm Animation

$M C_{2}^{21:}$

Algorithm Animation

$M C_{2}^{21}$

Algorithm Animation

