Computing Planar Voronoi Diagrams in Double Precision:
 A Further Example of Degree-driven Algorithm Design

David L. Millman Jack Snoeyink
University of North Carolina at Chapel Hill

June 16, 2010

The Problem

Given n sites on a pixel grid, what is the closest site to each pixel?

How much precision is need to determine this?

Analyzing Precision[LPT99]

E.g., Precision of the orientation test:

Analyzing Precision[LPT99]

E.g., Precision of the orientation test:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& o, v, q \in \mathbb{U}
\end{aligned}
$$

orientation (o, v, q)

Analyzing Precision[LPT99]

E.g., Precision of the orientation test:

Analyzing Precision[LPT99]

E.g., Precision of the orientation test:

$$
\begin{aligned}
\text { orientation }(o, v, q)= & \left|\begin{array}{lll}
1 & o_{x} & o_{y} \\
1 & v_{x} & v_{y} \\
1 & q_{x} & q_{y}
\end{array}\right| \\
= & v_{x} q_{y}-v_{x} o_{y}-o_{x} q_{y}+o_{x} o_{y} \\
& -v_{y} q_{x}+v_{y} o_{x}+q_{y} q_{x}-q_{y} o_{x}
\end{aligned}
$$

Analyzing Precision[LPT99]

E.g., Precision of the orientation test:

orientation $(o, v, q)=v_{x} q_{y}-v_{x} o_{y}-o_{x} q_{y}+o_{x} o_{y}$

$$
-v_{y} q_{x}+v_{y} o_{x}+q_{y} q_{x}-q_{y} o_{x}
$$

degree [2]

Other precision/robust approaches

Techniques for implementing geometric algorithms with finite precision computer arithmetic:

- Rely on machine precision (+epsilon)
- Exact Geometric Computation Y97
- Arithmetic Filters FW93,DP99
- Adaptive Predicates P92,S97
- Topological Consistency SI92
- Degree-driven algorithm design LPT99

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex

Trapezoid graph for proximity queries

- x-node()
- y-node()

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex

Trapezoid graph for proximity queries

- x-node()
- y-node()

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node()
- y-node()

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node()
- y-node()

Precision of x-node test:
$\operatorname{deg}[3] /[2] \gtrless \operatorname{deg}[1]$

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node () - deg [3]
- y-node()

Precision of x-node test:
$\operatorname{deg}[3] /[2] \gtrless \operatorname{deg}[1]$

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node () - deg [3]
- y-node()

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node () - deg [3]
- y-node()

Precision of y-node test:
orientation ()$=\left|\begin{array}{lll}{[2]} & {[3]} & {[3]} \\ {[2]} & {[3]} & {[3]} \\ {[0]} & {[1]} & {[1]}\end{array}\right|$

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node () - deg [3]
- y-node() - deg [6]

Precision of y-node test:
orientation ()$=\left|\begin{array}{lll}{[2]} & {[3]} & {[3]} \\ {[2]} & {[3]} & {[3]} \\ {[0]} & {[1]} & {[1]}\end{array}\right|$

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node () - deg [3]
- y-node() - deg [6]

Precision of y-node test:

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node () - deg [3]
- y-node() - deg [6]

Precision of y-node test:
$\operatorname{deg}[2] \gtrless \operatorname{deg}[2]$

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node () - deg [3]
- y-node() - deg [2]

Precision of y-node test:
$\operatorname{deg}[2] \gtrless \operatorname{deg}[2]$

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node () - deg [3]
- y-node() - deg [2]

Precision of x-node test:

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node () - deg [3]
- y-node ()$-\operatorname{deg}[2]$

Precision of x-node test:
$\operatorname{deg}[1] \gtrless \operatorname{deg}[1]$

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() - deg [1]
- y-node() - deg [2]

Precision of x-node test:
$\operatorname{deg}[1] \gtrless \operatorname{deg}[1]$

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() $-\operatorname{deg}[1]$
- y-node() $-\operatorname{deg}[2]$

This is a degree [2] trapezoid graph.

Implicit Voronoi diagram [LPT99]

The implicit Voronoi diagram is a rounded Voronoi diagram.

- vertices - degree [1]

Voronoi vertices snapped to half grid points.

- edges
pointers to the two sites that define the bisector, which the edge is a subset of.

Implicit Voronoi diagram [LPT99]

The implicit Voronoi diagram is a rounded Voronoi diagram.

- vertices - degree [1]

Voronoi vertices snapped to half grid points.

- edges
pointers to the two sites that define the bisector, which the edge is a subset of.

How do we build the Implicit Voronoi diagram with low precision?

Precision of Constructing the Voronoi Diagram

Three well known ways to build the Voronoi diagram.

point of intersection. Hence, a parabola $\beta_{\text {; }}$ never breaks through in the middle of an are of another parabola β_{i}.

The second possibility is that β_{j} appears in between two arcs. Let these β_{k} at which β_{j} is abcout to appear on the beach line, and assume that $\beta_{\text {, is }}$ is the beach line left of q and β_{ε} is on the beach line rigbt of q, as in Figure 7.3 . Then there is a circle C that passes through $p_{1} . p_{j}$, and p_{k}, the sites defining the parabolas. This circle is also tangent to the sweep line ℓ. The cyclic order on C, starting at the point of tangency with ℓ and going clockwisc, is $p, p p, p k$, because β_{j} is assumed to appear in between the arce of β_{i} and β_{k}. Considet an infinitesimal motion of the sweep line downward while keeping the circle

pass through p_{j}; either p_{i} or p_{k} will penetrate the interice. Therefore, in a suf-
ficiently small neighbortood of q the parabola β_{i} cannot appear on the beach ficiently small neighbortood of q the parabola β_{j} cannot appear on the beach line when the sweep line moves downward, because either p_{i} or p_{k} will be
closer to ℓ than p. closer to ℓ than p_{j}.

An immediate consequence of the lemma is that the beach line consists of at most $2 n-1$ parabolic arcs, each site encountered gives rise to one new arc and
the spliting of at most one existing arc into two, and there is no other way an arce can appear on the beach line.

Sweepline[F87]

- degree [6]

Divide and Conquer[GS86]

- degree [4]

Tracing[SI92]

- degree [4]

Precision of Constructing the Voronoi Diagram

Three well known ways to build the Voronoi diagram.

> Sweepline[F87]
> - degree [6]

Divide and Conquer[GS86]

- degree [4]

Tracing[SI92]

- degree [4]

Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram (dashed).

Precision of Constructing the Voronoi Diagram

Three well known ways to build the Voronoi diagram.

> Sweepline[F87]
> - degree [6]

Divide and Conquer[GS86]

- degree [4]

Tracing[SI92]

- degree [4]

Precision of Constructing the Voronoi Diagram

Three well known ways to build the Voronoi diagram.

> Sweepline[F87]
> - degree [6]

Divide and Conquer[GS86]

- degree [4]

Tracing[SI92]

- degree [4]

How do we build a degree [2] trapezoid graph for proximity queries when we can't even construct a Voronoi vertex?

Implicit Voronoi diagram [LPT99]

Implicit Voronoi diagram is disconnected.

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps
- Total size $\Theta(n \log U)$.

Proxy Segments

- Proxy segment represent Voronoi polygons.

Proxy Segments

- Proxy segment represent Voronoi polygons.

Proxy Segments

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.

Proxy Segments

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.
- Voronoi Trapezoidation split the trapezoids of the Proxy trapezoidation with bisectors.

Proxy Segments

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.
- Voronoi Trapezoidation split the trapezoids of the Proxy trapezoidation with bisectors.

Proxy Trapezoidation
is a degree [2] trapezoid graph.

Proxy Segments

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.
- Voronoi Trapezoidation split the trapezoids of the Proxy trapezoidation with bisectors.

Proxy Trapezoidation
is a degree [2] trapezoid graph.

How do we build a Proxy trapezoidation with degree [2]?

Construction Sketch

Build the Proxy trapezoidation with a randomized incremental construction (RIC).

Each step creates and deletes trapezoids and introduces and modifies proxy segments.

Maintain a history of the trapezoids created and deleted
 in the RIC in a history DAG.

Suppose trap τ is deleted and replaced by traps $\alpha_{1}, \alpha_{2}, \alpha_{3}$. The history DAG stores τ with pointers to α_{i}.

Construction Sketch

Insert site s_{i} :

(1) Identify proxy segment for s_{i}
(2) Add new proxy to the Proxy Trapezoidation
(3) Update old proxy segments
(9) Update history.

Construction Sketch

Insert site s_{i} :
(1) Identify proxy segment for s_{i}
(2) Add new proxy to the Proxy Trapezoidation
(3) Update old proxy segments
(9) Update history.

Analysis:

Use Mulmuley's general framework of stoppers and triggers (or definers and killers from the Dutch book) to show:
(1) Expected size is $O(n)$
(2) Expected time is $O(n \log n \log U)$

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

> A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

HullVertices[KS99]

Given a new site s_{i} and a trapezoid τ with $s_{o l d}$ as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_{i} and τ.

A geometric interpretation of Euclid's GCD Algorithm allows us, in degree [2], to find increasingly better rational approximations to the slope of a line.

Result

Given
sites $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and query points on a $U \times U$.

Proxy Trapezoidation construction

- Time: $O(n \log n \log U)$ expected
- Space: $O(n)$ expected
- Precision: degree [2]

Queries on Proxy Trapezoidation

- Time: $O(\log n)$
- Precision: degree [2]

Conclusions and Open Problems

Conclusions

Building a point location data structure:

- Degree [4], $O(n \log n)$ time.
- Degree [3], $O(n(\log n+\log U))$ expected time.
- Degree [2], $O(n(\log n \log U))$ expected time.

Open problems

- Inherent loss of efficiency with restricted predicates?
- Limited precision proximity queries in higher dimension?
- What other problems have limited precision solutions?
- Triangulations?
- Voronoi generalizations?
- Ray tracing?
- Approximation algorithms?

