# Degree-driven algorithm design for computing the Voronoi diagram 

David L. Millman, UNC-Chapel Hill

## Summary

In the paper Robust Proximity Queries: an Illustration of DegreeDriven Algorithm Design, Liotta, Preparata, and Tamassia derive a structure from the Voronoi diagram whose computation requires five times the precision of the input, but supports proximity queries in O(log $n$ ) time, with only two times the input precision. This work considers how this structure can be computed directly, using at most triple precision in $\mathrm{O}(n(\log n+\log g))$ time where $g$ is the bisector length.

## Implicit Voronoi Diagram and the Cell Graph

Given a set of $n$ sites $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ whose coordinates are $b$-bit integers, the implicit Voronoi diagram V ${ }^{*}(S)$ [LPT97] contains two parts

- Topological: The Planar embedding of the Voronoi diagram of $S$.
- Geometric: For each vertex $\left(v_{x}, v_{y}\right)$ of the Voronoi diagram of $S$, the implicit Voronoi diagram, $V^{*}(S)$ stores the half integers
$v_{x}^{*}= \begin{cases}v_{x} & \text { if } 0 \leq v_{x} \leq 2^{b}-1 \text { and } v_{x} \in \mathbb{Z}, \\ \left\lfloor v_{x}\right\rfloor+\frac{1}{2} & \text { if } 0 \leq v_{x} \leq 2^{b}-1 \text { and } v_{x} \notin \mathbb{Z}, \\ 0 & v_{x}<0, \\ 2^{b}-\frac{1}{2} & v_{x}>2^{b}-1 .\end{cases}$


Lower Layer: Voronoi diagram
Middle Layer: Implicit Voronoi diagram
Top Layer: Cell Graph

Jack Snoeyink, UNC-Chapel Hill
Predicates and Operations


## Incremental Construction

Using these predicates and operations we update the cell graph in a manner similar to Sugihara and Iri [S192] and carve out the region of the newly inserted site.


## References

G. Liotta, F. P. Preparata, and R. Tamassia. Robust proximity queries: an illustration of degree-driven algorithm design. In SCG '97, pages 156-165, New York, NY, USA, 1997. ACM.
K. Sugihara and M. Iri. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic. Proceedings of the IEEE, 80(9):1471-1484, 1992.

