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Abstract: Computers with multiple processor cores using shared memory are now ubiq-
uitous. In this paper, we present several parallel geometric algorithms that specifically
target this environment, with the goal of exploiting the additional computing power. The
d-dimensional algorithms we describe are (a) spatial sorting of points, as is typically used for
preprocessing before using incremental algorithms, (b) kd-tree construction, (c) axis-aligned
box intersection computation, and finally (d) bulk insertion of points in Delaunay triangu-
lations for mesh generation algorithms or simply computing Delaunay triangulations. We
show experimental results for these algorithms in 3D, using our implementations based on
the Computational Geometry Algorithms Library (CGAL, http://www.cgal.org/). This
work is a step towards what we hope will become a parallel mode for CGAL, where algo-
rithms automatically use the available parallel resources without requiring significant user
intervention.
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Algorithmes géométriques pour les ordinateurs
multi-coeurs

Résumé : Les ordinateurs multi-coeurs, dotés de plusieurs processeurs utilisant une
mémoire partagée sont dorénavant monnaie courante. Dans cet article, nous présentons
plusieurs algorithmes géométriques parallèles qui ciblent cette architecture, dans le but
d’exploiter la puissance de calcul disponible supplémentaire. Les algorithmes d-dimensionnels
que nous décrivons sont (a) le tri spatial de points, qui est communément utilisé comme phase
préparatoire avant les algorithmes incrémentaux, (b) la construction de kd-trees, (c) le calcul
d’intersections de boîtes alignées sur les axes, ainsi que (d) l’insertion par paquet de points
dans des triangulations de Delaunay pour la génération de maillages ou simplement pour
calculer une triangulation de Delaunay. Nous montrons des résultats expérimentaux pour
ces algorithmes dans le cas 3D, en utilisant nos implémentations basées sur la bibliothèque
CGAL (Computational Geometry Algorithms Library, http://www.cgal.org/). Ce travail
est une étape vers ce qui, nous l’espérons, deviendra un mode parallèle de CGAL, où les algo-
rithmes utiliseront automatiquement les ressources parallèles sans intervention significative
supplémentaire de la part de l’utilisateur.

Mots-clés : algorithmes parallèles, algorithmes géométriques, triangulations de Delaunay,
maillages, dimension d, kd trees, intersection de boîtes, tri spatial, conteneur compact,
CGAL, multi-coeurs
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4 Batista & Millman & Pion & Singler

1 Introduction
It is generally acknowledged that the microprocessor industry has reached the limits of the
sequential performance of processors. Processor manufacturers now focus on parallelism
to keep up with the demand for high performance. Current laptop computers all have 2
or 4 cores, and desktop computers can easily have 4 or 8 cores, with even more in high-end
computers. This trend incites application writers to develop parallel versions of their critical
algorithms. This is not an easy task, from both the theoretical and practical points of view.

Work on theoretical parallel algorithms began decades ago, even parallel geometric algo-
rithms have received attention in the literature. In the earliest work, Chow [10] addressed
problems such as intersections of rectangles, convex hulls and Voronoi diagrams. Since then,
researchers have studied theoretical parallel solutions in the PRAM model, many of which
are impractical or inefficient in practice. This model assumes an unlimited number of proces-
sors, whereas in this paper we assume that the number of processors is significantly less than
the input size. Both Aggarwal et al. [2] and Akl and Lyons [3] are excellent sources of the-
oretical parallel modus operandi for many fundamental computational geometry problems.
The relevance of these algorithms in practice depends not only on their implementability,
but also on the architecture details, and implementation experience, which is necessary for
obtaining good insight.

Programming tools and languages are evolving to better serve parallel computing. Be-
tween hardware and applications, there are several layers of software. The bottom layer
contains primitives for thread management and synchronization. Next, the programming
layer manipulates the bottom layer’s primitives, for example the OpenMP standard applied
to the C++ programming language. On top are domain specific libraries, for example the
Computational Geometry Algorithms Library (CGAL), which is a large collection of geo-
metric data structures and algorithms. Finally, applications use these libraries. At each
level, efforts are needed to provide efficient programming interfaces to parallel algorithms
that are as easy-to-use as possible.

In this paper, we focus on shared-memory parallel computers, specifically multi-core
CPUs that allow simultaneous execution of multiple instructions on different cores. This ex-
plicitly excludes distributed memory systems as well as graphical processing units that have
local memory for each processor and require special code to communicate. As we are inter-
ested in practical parallel algorithms it is important to base our work on efficient sequential
code. Otherwise, there is a risk of good relative speedups that lack practical interest and
skew conclusions about the algorithms scalability. For this reason, we decided to base our
work upon CGAL, which already provides mature codes that are among the most efficient
for several geometric algorithms [19]. We investigate the following d-dimensional algorithms:
(a) spatial sorting of points, as is typically used for preprocessing during incremental algo-
rithms, (b) kd-tree construction, (c) axis-aligned box intersection computation, and finally
(d) bulk insertion of points in Delaunay triangulations for mesh generation algorithms or
simply computing Delaunay triangulations.

The remainder of the paper is organized as follows: Section 2 describes our hardware and
software platform; Section 3 contains the description of the thread-safe compact container
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Parallel Geometric Algorithms for Multi-Core Computers 5

used by the Delaunay triangulation. Sections 4, 5, 6 and 7 describe our parallel algorithms,
related work and experimental results for (a), (b), (c) and (d) respectively; finally we con-
clude and present possible future work in parallel computational geometry. Appendix A
provides detailed experimental results on the tuning parameters for the parallel Delaunay
algorithm.

2 Platform
OpenMP For thread control, several frameworks of relatively high level exist, such as
TBB [20] or OpenMP. We decided to rely on the latter, which is implemented by almost
all up-to-date compilers. The OpenMP specification in version 3.0 includes the #pragma
omp task construct. This creates a task, a code block executed asynchronously, that can
be nested recursively. The enclosing region may wait for all direct children tasks to finish
using #pragma omp taskwait. A #pragma omp parallel region at the top level provides
a user specified number of threads to process the tasks. When a new task is spawned, the
runtime system can decide to run it with the current thread immediately, or postpone it
for processing by an arbitrary thread. The GNU C/C++ compiler (GCC) supports this
construct as of upcoming version 4.4.

Libstdc++ parallel mode The C++ STL implementation distributed with the GCC
features a so-called parallel mode [22] as of version 4.3, based on the Multi-Core Standard
Template Library [23]. It provides parallel versions of many STL algorithms. We use some of
these algorithmic building blocks, such as partition, nth_element and random_shuffle1.

Evaluation system We evaluated the performance of our algorithms on an up-to-date
machine, featuring two AMD Opteron 2350 quad-core processors at 2GHz and 16GB of
RAM. We used GCC 4.3 and 4.4 (prerelease, for the algorithms using the task construct),
enabling optimization (-O2 and -DNDEBUG). If not stated otherwise, each test was run at
least 10 times, and the average over all running times was taken.

3 A thread-safe compact container
Many geometric data structures are composed of large sets of small objects of the same
type or a few different types, organized as a graph. This is for example the case of the
Delaunay triangulation, which is often represented as a graph connecting vertices, simplices
and eventually k-simplices. It is also the case for kd trees and other trees which are recursive
data structures manipulating many nodes of the same type.

1 partition partitions a sequence with respect to a given pivot as in quicksort. nth_element permutes
a sequence such that the element with a given rank k is placed at index k, the smaller ones to the left, and
the larger ones to the right. random_shuffle permutes a sequence randomly.
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6 Batista & Millman & Pion & Singler

The geometric data structures of CGAL typically provide iterators over the elements
such as the vertices, in the same spirit as the STL containers. In a nutshell, a container
encapsulates a memory allocator together with a mean to iterate over its elements, the
iterator.

For efficiency reasons, it is important that the elements are stored in a way that does
not waste too much memory for the internal bookkeeping. Moreover, spatial and temporal
locality are important factors: the container should attempt to keep elements that have
been added consecutively close to each other in memory, in order to reduce cache trashing.
Operations that must be efficiently supported are the addition of a new element as well as
the release of an obsolete element, and both these operations must not invalidate iterators
referencing other existing elements.

A typical example is the 3D Delaunay triangulation, which is using a container for the
vertices and a container for the cells. Building a Delaunay triangulation requires efficient
alternate addition and removal of new and old cells, and addition of new vertices.

A compact container To this effect, and with the aim of providing a container which
can be re-used in several geometric data structures, we have designed a container with
the desired properties. A non thread-safe version of our container is already available in
CGAL as the Compact_container class [15]. Its key features are: (a) amortized constant
time addition and removal of elements, (b) very low asymptotic memory overhead and good
memory locality.

Note that we use the term addition instead of the more familiar insertion, since the
operation does not allow to specify where in the iterator sequence a new element is to be
added. This is generally not an issue for geometric data structures which do not have
meaningful linear orders.

There are mainly two STL containers to which Compact_container can be compared :
vector and list.

• A vector is able to add new elements at its back in amortized constant time, but
erasing any element can be performed in only linear time. Its memory overhead is
typically a constant factor (usually 2) away from the optimal, since elements are al-
located in a consecutive array, which is resized on demand. Moreover, addition of an
element may invalidate iterators if the capacity is exceeded and a resizing operation
is triggered, which is at best inconvenient. Consider the elements being the nodes of
a graph, referring to each other. It could nevertheless be useful under some circum-
stances, like storing vertices if a bound on their numbers is known in advance. One
of its advantages is that its iterator provides random access, i. e. the elements can be
easily numbered.

• A list allows constant time addition and removal anywhere in the sequence, and its
iterator is not invalidated on these operations. The main disadvantage of a list is
that it stores nodes separately, and the need for an iterator implies that typically two
additional pointers are stored per node, plus the allocator’s internal overhead for each
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Parallel Geometric Algorithms for Multi-Core Computers 7

node. Singly-connected lists would decrease this overhead slightly by removing one
pointer, but there would still be one remaining, plus the internal allocator overhead.

The Compact_container improves over these by mixing advantages from both, in the
form which can be roughly described as a list of blocks. It allocates elements in consecu-
tive blocks, which reduces the allocator’s internal overhead. In order to reduce it at best
asymptotically, it allocates blocks of linearly increasing size (in practice starting at 16 el-
ements and increasing 16 by 16 subsequently). This way, n elements are stored in O(

√
n)

blocks of maximum size O(
√
n). There is a constant memory overhead per block (assuming

the allocator’s internal bookkeeping is constant), which causes a sub-linear waste of O(
√
n)

memory in the worst case. This choice of block size evolution is optimal, as it minimizes
the sum of a single block size (the wasted memory in the last block which is partially filled)
and the number of blocks (the wasted memory which is a constant per block).

Each block’s first and last elements are not available to the user, but used as markers
for the needs of the iterator, so that the blocks are linked and the iterator can iterate
over the blocks. Allowing removal of elements anywhere in the sequence requires a way to
mark those elements as free, so that the iterator knows which elements it can skip. This is
performed using a trick, which requires an element to contain a pointer to 4-byte aligned
data. This is the case for many objects such as CGAL’s Delaunay vertices and cells, or any
kind of node which stores a pointer to some other element. Whenever this is not possible,
for example when storing only a point with only floating-point coordinates, an overhead is
indeed triggered by this pointer. The 4-byte alignment requirement is not a big issue in
practice on current machines as many objects are required to have an address with at least
such an alignment, and it has the advantage that all valid pointers have their two least
significant bits zeroed. The Compact_container uses this property to mark free elements
by setting these bits to non-zero, and using the rest of the pointer for managing a singly-
connected free list.

Erasing an element then simply means adding it to the head of the free list. Adding an
element is done by taking the first element of the free list if it is not empty. Otherwise, a
new block is allocated, all its elements are added to the free list, and the first element is
then used.

Figure 1 illustrates the memory layout of the Compact_container. In the example, 5
blocks are allocated and 5 elements are on the free list (in green). We see that the container
maintains pointers to the first and last elements (in red) for the iterator’s needs, and for
the same reason all blocks are chained, hence the first and last elements of each block (in
blue) are not usable. It also maintains the size (the number of live elements, here 50),
the capacity (the maximum achievable size without re-allocation, here 55) and the current
block size (here 21). In addition, but not strictly necessary, a vector stores the pointers to
all blocks, in order to be able to reach the blocks more efficiently when allowing block de-
allocation. Indeed, de-allocating a block in the middle of the blocks sequence (which could
be useful to release memory) prevents the predictability of the size of each block, and hence
the constant time reachability of the end of the blocks, which is otherwise the only way to
access the next block. A practical advantage of this is that it allows to destroy a container in
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8 Batista & Millman & Pion & Singler

first element

vector

last element

free list

blocks vector

block size

size

capacity

allocator

Compact container

blocks of elements

Figure 1: Compact_container memory layout.

O(
√
n) time instead of O(n), when the element’s destructor is trivial (completely optimized

away) as is often the case.
This design is very efficient as the needs for the iterator cause no overhead for live

elements, and addition and removal of elements are just a few simple operations in most
cases. Memory locality is also rather good overall: if only additions are performed, then
the elements become consecutive in memory, and the iterator order is even the order of the
additions. For alternating sequences of additions and removals, like a container of cells of an
incremental Delaunay triangulation might see, the locality is still relatively good if the points
are inserted in a spatial local order such as Hilbert or BRIO. Indeed, for a point insertion,
the Bowyer-Watson algorithm erases connected cells, which are placed consecutively on the
free list, and requires new cells, consecutively as well, from the free list, to re-triangulate
the hole. So, even if some shuffling is unavoidable, this simple mechanism takes care of
maintaining a relatively good locality of the data on a large scale.

Experimental comparison We have measured the time and memory space used by the
computation of a (sequential) 3D Delaunay triangulation of 1 million random points using
CGAL, only changing the containers used internally to store the vertices and cells. The
experiment was conducted on a MacBook Pro with a 2.33GHz 32 bit Intel processor, 2GB
of RAM, and using the GCC compiler version 4.3.2 with optimization level 2. Using list, the
program took 19.3 seconds and used 389MB of RAM, while using our Compact_container
it took 13.3 seconds and used 288MB. The optimal memory size would have been 258MB,
as computed by the number of vertices and cells times their respective memory sizes (28 and
36 bytes respectively). This means that the internal memory overhead was 51% for list
and only 11% for Compact_container.

We also performed the same experiment, this time for 10 million points, on a 64 bit
machine with 16GB of RAM under Linux. We observed almost the same internal memory
overheads but with a smaller time difference of still 28%. For 30 million points, the internal
memory overhead for Compact_container went down to 8.6%.
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Parallel Geometric Algorithms for Multi-Core Computers 9

Fragmentation Some applications like mesh simplification build a large triangulation
and then select a significant fraction of the vertices and remove them. In such cases, the
Compact_container is not at its best, since it never releases memory blocks to the system
automatically. In fact, such an application would produce a very large free list, with the
free elements being spread all over the blocks, producing high fragmentation. Moreover, the
iterator would be slower as it skips the free elements one by one (this would even violate the
complexity requirements of standard iterators whose increment and decrement operations
are required to be amortized constant time). The Compact_container does not provide a
specific function to handle this issue, and the recommended way to improve the situation is
to copy the container, which moves its elements to a new, compact area.

Parallelization Using the Compact_container in the parallel setting required some changes.
It should be possible to have a shared data structure (e.g. a triangulation class), and change
it using several threads concurrently. So the container is required to support concurrent
addition and removal operations. At such a low level, thread safety needs to be achieved in
an efficient way, as taking locks for each operation would necessarily degrade performance,
with lots of expected contention.

The way we extended the Compact_container class is that we chose to have one inde-
pendent free list per thread, which completely removed the need for synchronization in the
removal operation. Moreover, considering the addition operation, if the thread’s free list is
not empty, then a new element can be taken from its head without need for synchronization
either, and if the free list is empty, the thread allocates a new block, and adds its elements
to its own free list. Therefore, the only synchronization needed is when allocating a new
block, since (a) the allocator may not be thread-safe and (b) all blocks need to be known
by the container class so a vector of block pointers is collected. Since the size of the blocks
is growing as O(

√
n), the relative overhead due to synchronization also decreases as the

structure grows.
Note that, since when allocating a new block, all its elements are put on the current

thread’s free list, it means that they will initially be used only by this thread, which also
helps locality in terms of threads. However, once an element has been added, another
thread can remove it, putting it on his own free list. So in the end, there is no guarantee
that elements in a block are “owned” forever by a single thread, some shuffling can happen.
Nevertheless, we should obtain a somewhat “global locality” in terms of time, memory, and
thread (and geometry thanks to spatial sorting, if the container is used in a geometric
context).

A minor drawback of this approach is that free elements are more numerous, and the
wasted memory is expected to be O(t

√
n) for t threads, each typically wasting a part of a

block (assuming an essentially incremental algorithm, since here as well, no block is released
back to the allocator).

Element addition and removal are operations which are then allowed to be concurrent.
Read-only operations like iterating can also be performed concurrently.

RR n° 6749

in
ria

-0
03

43
80

4,
 v

er
si

on
 1

 - 
3 

D
ec

 2
00

8



10 Batista & Millman & Pion & Singler

Benchmark Figure 2 shows a synthetic benchmark of the parallel Compact_container
alone, by performing essentially parallel additions together with 20% of interleaved deletions,
and comparing it to the sequential original version. We see that the container scales very
nicely with the number of threads as soon as a minimum number of elements is reached.
This benchmark is synthetic, since no computation is performed between the insertions and
deletions. We can hope that using it for geometric algorithms will prove it useful even with
lower numbers of elements, although this is hard to measure.
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Figure 2: Speedups obtained for the compact container with additions and 20% of deletions.

4 Spatial sorting
Problem definition and algorithm Many geometric algorithms implemented in CGAL
are incremental, and their speed depends on the order of insertion for locality reasons in
geometric space and in memory. For cases where some randomization is still required for
complexity reasons, the Biased Randomized Insertion Order method [4] (BRIO) is an optimal
compromise between randomization and locality. Given n randomly shuffled points and a
parameter α, BRIO recurses on the first bαnc points, and spatially sorts the remaining
points. For these reasons, CGAL provides algorithms to sort points along a Hilbert space-
filling curve as well as a BRIO.

Since spatial sorting (either strict Hilbert or BRIO) is an important substep of several
CGAL algorithms, the parallel scalability of those algorithms would be limited if the spatial
sorting was computed sequentially, due to Amdahl’s law. For the same reason, the random
shuffling should also be parallelized.

The sequential implementation uses a divide-and-conquer (D&C) algorithm. It recur-
sively partitions the set of points with respect to a dimension, taking the median point
as pivot. The dimension is then changed and the order is reversed appropriately for each
recursive call, such that the process results in arranging the points along a Hilbert curve.
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Parallel Geometric Algorithms for Multi-Core Computers 11
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Figure 3: Speedup for 2D spatial sort.
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Figure 4: Speedup for kd tree construction.

Parallelizing this algorithm is straightforward. The partitioning is done by calling the
parallel nth_element function, and the parallel random_shuffle for BRIO. The recursive
subproblems are processed by newly spawned OpenMP tasks.

Experimental results The speedup (ratio of the running times between the parallel and
sequential versions) obtained for 2D Hilbert sorting are shown in Figure 3. For a small
number of threads, the speedup is good for problem sizes greater than 1000 points, but the
efficiency drops to about 60% for 8 threads. We blame the memory bandwidth limit for this
decline. The results for the 3D case are very similar except that the speedup is 10–20% less
for large inputs. Note that, for reference, the sequential code sorts 106 random points in
0.39s.

5 Kd tree construction
Problem definition and algorithm A kd tree [5] is a fundamental spatial search data
structure, allowing efficient queries for the subset of points contained in an orthogonal query
box.

In principle, a kd tree is a dynamic data structure. However, it is unclear how to do
balancing dynamically, so worst-case running time bounds for the queries are only given for
trees constructed offline. Also, insertion of a single point is hardly parallelizable. Thus, we
describe here the construction of the kd tree for an initially given set of points.

The approach is actually quite similar to spatial sorting. The algorithm partitions the
data and recursively constructs the subtrees for each half in parallel.

Experimental results The speedup for the parallel kd tree construction of 3-dimensional
random points with double-precision Cartesian coordinates is shown in Figure 4. The
achieved speedup is similar to the spatial sort case, a little less for small inputs. Note
that, for reference, the sequential code constructs a tree of 106 random points in 2.74s.
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12 Batista & Millman & Pion & Singler

6 D-dimensional box intersection
Problem definition We consider the problem of finding all intersections among a set of
n iso-oriented d-dimensional boxes. This problem has applications in fields where complex
geometric objects are approximated by their bounding box in order to filter them against
some predicate.

Algorithm We parallelize the algorithm proposed by Zomorodian and Edelsbrunner [25],
which is already used for the sequential implementation in CGAL, and proven to perform
well in practice. The algorithm is described in terms of nested segment and range trees,
leading to an O(n logd n) space algorithm in the worst case. Since this is too much space
overhead, the trees are not actually constructed, but traversed on the fly. So we end up with
a D&C algorithm using only logarithmic extra memory (apart from the possibly quadratic
output). For small subproblems below a certain cutoff size, a base-case quadratic-time
algorithm is used to check for intersections.

Again, the D&C paradigm promises good parallelization opportunities. We can assign
the different parts of the division to different threads, since their computation is usually
independent.

However, we have a detail problem in the two most important recursive conquer calls:
the data they process is in general not disjoint. Worse, although they do not change the
input elements, the recursive calls may reorder them. This is a problem for parallelization,
since we cannot just pass the same data to both calls if they are supposed to run in parallel.
Thus, we have to copy2.

Let us describe this divide step in more detail. The problem is solved dimension by
dimension, recursively. In each level, the input consists of two sequences: points and inter-
vals. A pivot point m is determined in a randomized fashion, and the sequence of points is
partitioned accordingly. The two parts are passed to the two recursive calls, accompanied
by the respective intervals. For the left part, all intervals are chosen that have their left end
point left from m. For the right part, all intervals that have their right end point (strictly3)
right of m. Of course, these two sets of intervals can overlap, common elements are exactly
the ones spanning m. See Figure 5 for an illustration.

We can reorder the original sequence such that the intervals to the left are at the be-
ginning, the intervals to the right at the end, and the common intervals being placed in
the middle. Intervals not contained in any part (degenerated to an empty interval in this
dimension) can be moved behind the end. Now, we have five consecutive ranges in the
complete sequence. [i1, i2) are the intervals spanning the whole region. They are handled
separately. [i2, i3) and [i4, i5) are respectively the intervals for the left and right recursion
steps only. [i3, i4) are the intervals for both the left and the right recursion step. [i5, i6) are
the ignored degenerate intervals.

2We could take pointers instead of full objects in all cases since they are only reordered. But this saves
only a constant factor and leads to cache inefficiency due to lacking locality, see [1]

3Whether the comparisons are strict or not, depends on whether the boxes are open or closed. This does
not change anything in principle. Here, we describe only the open case.
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Figure 5: Partitioning the sequence of inter-
vals.
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Figure 6: Treating the split sequence of
intervals. Fat lines denote copied ele-
ments.

To summarize, we need [i2, i4) for the left recursion step, and [i3, i5) for the right one,
which overlap. The easiest way to solve the problem is to either copy [i2, i4) or [i3, i5).
But this is inefficient, since for well-shaped data sets (having a relatively small number of
intersections), the part [i3, i4), which is the only one we really need to duplicate, will be quite
small. Thus, we will in fact copy only [i3, i4) to a newly allocated sequence [i′3, i

′
4). Now

we can pass [i2, i4) to the left recursion, and the concatenation of [i′3, i
′
4) and [i4, i5) to the

right recursion. However, the concatenation must be made implicitly only, to avoid further
copying. The danger arises that the number of these gaps might increase in a sequence
range as recursion goes on, leading to overhead in time and space for traversing them, which
counteracts the parallel speedup.

However, we will now prove that this can always be avoided. Let a continuous sequence
be the original input or a copy of an arbitrary range. Let a continuous range be a range of
a continuous sequence. Then, a sequence range consisting of at most two continuous ranges
always suffices for passing a partition to a recursive call.

Proof: We can ignore the ranges [i1, i2) and [i5, i6), since they do not take part in this
overlapping recursion, so it is all about [i2, i3), [i3, i4), and [i4, i5). Induction begin: The
original input consists of one continuous range. Induction hypothesis: [i1, i6) consists of at
most two continuous ranges. Inductive step: [i1, i6) is split into parts. If i3 is in its left range,
we pass the concatenation of [i2, i3)[i′3, i

′
4) (two continuous ranges) to the left recursion step,

and [i3, i5) to the right one. Since the latter is just a subpart of [i1, i6), there cannot be
additional ranges involved. If i3 is in the right range of [i1, i6), we pass the concatenation
of [i′3, i

′
4)[i4, i5) (two continuous ranges) to the right recursion step, and [i2, i4) to the right

one. Since the latter is just a subpart of [i1, i6), there cannot be additional ranges involved.
The three cases and their treatment are shown in Figure 6.

Deciding whether to subtask The general question is how many tasks to create,
and when to create them. Having many tasks exploits parallelism better, and improves
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14 Batista & Millman & Pion & Singler

load balancing. On the other hand, the number of tasks T should be kept low in order to
limit the memory overhead. In the worst case, all data must be copied for the recursive
call, so the size of additional memory can grow with O(T · n). Generally speaking, only
concurrent tasks introduce disadvantages, since the additional memory is deallocated after
having been used. So if we can limit the number of concurrent tasks to something lower
than T , that number will count. There are several criteria that should be taken into account
when deciding whether to spawn a task.

• Spawn a new task if the problem to process is large enough (both the number of
intervals and the number of points are beyond a certain threshold value cmin (tuning
parameter)). This strategy strives to amortize for the task creation and scheduling
overhead. However, in this setting, the running time overhead can be proportional
to the problem size, because of the copying. In the worst case, a constant share of
the data must be copied a logarithmic number of times, leading to excessive memory
usage.

• Spawn a new task if there are less than a certain number of tasks tmax (tuning pa-
rameter) in the task queue. Since OpenMP does not allow to inspect its internal task
queue, we have to count the number of currently active tasks manually, using atomic
operations on a counter. This strategy can effectively limit the number of concurrently
processed tasks, and so the memory consumption indirectly.

• Spawn a new task if there is memory left from a pool of size s (tuning parameter). This
strategy can effectively limit the amount of additional memory, guaranteeing correct
termination.

In fact, we combine the three criteria to form a hybrid. All three conditions must be
fulfilled.

Experimental results 3-dimensional boxes with integer coordinates were randomly gen-
erated as in [25] such that the expected number of intersections for n boxes is n/2.

For the results in Figure 7(a), we used cmin = 100, tmax = 2 · t, and s = 1 · n, where t
is the number of threads. The memory overhead is limited to 100%, but as we can see, the
relative memory overhead is much lower in practice, below 20% for not-too-small inputs4.
The speedups are quite good, reaching more than 6 for 8 cores, and being just below 4 for
4 threads. Note that, for reference, the sequential code performs the intersection of 106

boxes in 1.86s.
Figure 7(b) shows the results for real-world data. We test 3-dimensional models for

self-intersection, by approximating each triangle with its bounding box, which is a common
application. The memory overhead stays reasonable. The speedups are a bit worse than for
the random input of the equivalent size. This could be due to the much higher number of
found intersections (∼ 7n).

4The memory overhead numbers refer to the algorithmic overhead only. For software engineering reasons,
e. g. preserving the input sequence, the algorithm may decide to copy the whole input in a preprocessing
step.
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Figure 7: Intersecting boxes. Speedup is denoted by squares, relative memory overhead by
circles.

7 Bulk insertion into 3D Delaunay triangulations
Given a set S of n points in Rd, a triangulation of S partitions the convex hull of its points
into simplices (cells) with vertices in S. The Delaunay triangulation DT (S) is characterized
by the empty sphere property that states the circumsphere of any cell does not contain any
other point of S in its interior. A point q is said to be in conflict with a cell in DT (S), if it
belongs to the interior of the circumsphere of that cell, and the conflict region of q is defined
as the set of all such cells. The conflict region is non-empty, since it must contain at least
the cell the point lies in, and is known to be connected.

Related work Perhaps the most direct method for a parallel scheme is to use the D&C
paradigm, recursively partitioning the point set into two subregions, computing solutions
for each subproblem, and finally merging the partial solutions to obtain the triangulation.
Either the divide or the merge step are usually quite complex, though. Moreover, bulk
insertions of points in already computed triangulations is not supported well, as required
for many mesh refinement algorithms.

A feasible parallel 3D implementation was first presented by Cignoni et al. [12]. In a
complex divide step, the Delaunay wall is constructed, the set of cells splitting regions, before
working in parallel in isolation. As pointed out by the authors, this method suffers from
limited scalability due to the cost of wall construction. It achieves only a 3 times speedup
triangulating 8000 points on an 8-processor nCUBE 2 hypercube. Cignoni et al. [11] also
designed an algorithm where each processor triangulates its set of points in an incremental
fashion. Although this method does not require a wall, tetrahedra with vertices belonging
to different processors are constructed multiple times. A speedup of 5.34 was measured for
8 processors for 20000 uniformly distributed points.

Lee et al. [18], focusing on distributed memory systems, improved this algorithm by
exploiting a projection-based partitioning scheme [7], eliminating the merging phase. They
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16 Batista & Millman & Pion & Singler

showed that a simpler non-recursive version of this procedure lead to better results for almost
all considered inputs. The algorithm was implemented on an INMOS TRAM network of
32 T800 processors and achieved a 6.5 times speedup on 8 processors with 10000 randomly
distributed points. However, even their best partitioning method took 75% of the total
elapsed time.

The method of Blelloch et al. [7] treats the 2D case using the well-known relation with
3D convex hulls. Instead of directly solving a convex hull problem, another reduction step to
2D lower hull is carried out. It was shown that the resulting hull edges are already Delaunay
edges, but the algorithm requires an additional step to construct missing edges. They
obtained a speedup of 5.7 on 8 CPUs with uniform point distribution on a shared-memory
SGI Power Challenge.

More recently, parallel algorithms avoiding the complexity of the D&C algorithms were
published. Kohout et al. [17] proposed parallelizing randomized incremental construction.
This is based on the observation that topological changes caused by point insertion are likely
to be extremely local. When a thread modifies the triangulation, it acquires exclusive access
to the containing tetrahedron and a few cells around it. For a three-dimensional uniform
distribution of half a million points, their algorithm reaches speedups of 1.3 and 3.6 using
2 and 4 threads, respectively on a 4 processors Intel Itanium at 800MHz with a 4MB cache
and 4GB RAM. We observed, however, that their sequential speed is about one order of
magnitude lower than the CGAL implementation, which would make any parallel speedup
comparison unfair.

Another algorithm based on randomized incremental construction was proposed by Bland-
ford et al. [6]. It employs a compact data structure and follows a Bowyer-Watson ap-
proach [9, 24], maintaining an association between uninserted points and their containing
tetrahedra [13]. A coarse triangulation is sequentially built using a separate triangulator
(Shewchuk’s Pyramid [21]) before threads draw their work from the subsets of points asso-
ciated with these initial tetrahedra. This is done in order to build an initial triangulation
sufficiently large so as to avoid thread contention. For uniformly distributed points, their
algorithm achieved a relative speedup of 46.28 on 64 1.15-GHz EV67 processors with 4GB
RAM per processor, spending 6% to 8% of the total running time in Pyramid, but with the
smallest instance consisting of 23 million points. Their work targeted huge triangulations
(230.5 points on 64 processors), as they also use compression schemes which would only slow
things down for more common input sizes. In this paper, we are also interested in speeding
up smaller triangulations, whose size ranges from a thousand to millions of points (in fact,
we tested up to 31 million points, which fits in 16GB of memory).

Sequential framework CGAL provides 2D and 3D incremental algorithms [8] and a
similar approach has also been implemented in d dimensions [16]. After a spatial sort using
a BRIO, points are iteratively inserted using a locate step followed by an update step. The
locate step finds the cell containing q using a remembering stochastic walk [14] that starts
at some cell incident to the vertex created by the previous insertion, and navigates using
orientation tests and the adjacency relations between cells. The update step determines the
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Parallel Geometric Algorithms for Multi-Core Computers 17

conflict region of q using the Bowyer-Watson algorithm [9, 24], that is, by checking the empty
sphere property for all the neighbors of the cell containing q, recursing using the adjacency
relations again. The conflict region is then removed, creating a “hole”, and the triangulation
is updated by creating new cells connecting q to the vertices on the boundary of the “hole”.
From a storage point of view, a vertex stores its point and a pointer to an incident cell, and
a cell stores pointers to its vertices and neighbors. Vertices and cells are themselves stored
in two compact containers (see Section 3). Note that there is also an infinite vertex linked
to the convex hull through infinite cells. Also worth noting for the sequel is that once a
vertex in created, it never moves (this paper does not consider removing vertices), therefore
its address is stable, while a cell can be destroyed by subsequent insertions.

Parallel algorithm We attack the problem of constructing DT (S) in parallel by allowing
concurrent insertions into the same triangulation, and spreading the input points over all
threads. Our scheme is similar to [6, 17], but with different point location, load management
mechanisms and locking strategies.

First, a bootstrap phase inserts a small randomly chosen subset S0 of the points using
the sequential algorithm, in order to avoid contention for small data sets. The size of S0

is a tuning parameter. Next, the remaining points are Hilbert-sorted in parallel, and the
resulting range is divided into almost equal parts attributed to all threads. Threads then
insert their points using an algorithm similar to the sequential case (location and updating
steps), but with the addition that threads protect against concurrent modifications to the
same region of the triangulation. This protection is performed using fine-grained locks
stored in the vertices. Concerning the storage, the thread-safe compact container described
in Section 3 has been used.

Locking and retreating Threads read the data structure during the locate step, but
only the update step locally modifies the triangulation. To guarantee threads safety, both
procedures lock and unlock some vertices.

A lock conflict occurs when a thread attempts to acquire a lock already owned by another
thread. Systematically waiting for the lock to be released is not an option since a thread
may already own other locks, potentially leading to a deadlock. Therefore, lock conflicts
are handled by priority locks where each thread is given a unique priority (totally ordered).
If the acquiring thread has a higher priority it simply waits for the lock to be released.
Otherwise, it retreats, releasing all its locks and restarting an insertion operation, possibly
with a different point. This approach avoids deadlocks and guarantees progress. Note
that the implementation of priority locks needs attention, since comparing the priority and
acquiring a lock need to be performed atomically5.

Interleaving A retreating thread should continue by inserting a far away point, hope-
fully leaving the area where the higher priority thread is operating. On the other hand,

5Since this is not efficiently implementable using OpenMP primitives, we used our own implementation
using spin locks based on hardware-supported atomic operations.
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18 Batista & Millman & Pion & Singler

inserting a completely unrelated point is impeded by the lack of a expectedly close starting
point for the locate step. Therefore, each thread divides its own range into several parts of
roughly equal sizes, and keeps a reference vertex for each of them to restart point location.
The number of these parts is a tuning parameter of the algorithm. It starts to insert points
from the first part. Each time it has to retreat, it switches to the next part in a round-
robin fashion. Because the parts are constructed from disjoint ranges of the Hilbert-sorted
sequence, vertices taken from different parts are not particularly likely to be spatially close
and trigger conflicts. This results in an effective compromise between locality of reference
and conflict avoidance.

Locking strategies There are several ways of choosing the vertices to lock.
A simple strategy consists in locking the vertices of all cells a thread is currently consid-

ering. During the locate step, this means locking the d+ 1 vertices of the current cell, then,
when moving to a neighboring cell, locking the opposite vertex and releasing the unneeded
lock. During the update step, all vertices of all cells in conflict are locked, as well as the
vertices of the cells which share a face with those in conflict, since those cells are also tested
for the insphere predicate, and at least one of their neighbor pointers will be updated. Once
the new cells are created and linked, the acquired locks can be released. This strategy is
simple and easily proved correct. However, as the experimental results show, high degree
vertices become a bottleneck with this strategy.

We therefore propose an improved strategy that reduces the number of locks and partic-
ularly avoids locking high degree vertices as much as possible. It works as follows: reading a
cell requires locking at least two of its vertices, changing a cell requires locking at least d of
its vertices, and changing the incident cell pointer of a vertex requires it to be locked. This
rule implies that a thread can change a cell without others reading it, but it allows some
concurrency among reading operations. Most importantly, it allows reading and changing
cells without locking all their vertices, therefore giving some leeway to avoid locking high
degree vertices. During the locate step, keeping at most two vertices locked is enough: when
using neighboring relations, choosing a vertex common with the next cell is done by choos-
ing the one closest to q (thereby discarding the infinite vertex). During the update step,
a similar procedure needs to be followed except that once a cell is in conflict, it needs to
have d vertices locked, which allows to exclude the furthest vertex from q, with the following
caveat: all vertices whose incident cell pointer point to this cell also need to be locked. This
measure is necessary so that other threads starting a locate step at this vertex can access
the incident cell pointer safely. Once the new cells are created and linked, the incident cell
pointers of the locked vertices are updated (and those only) and the locks are released.

The choice of attempting to exclude the furthest vertex is motivated by the consideration
of needle shaped simplices for which it is preferable to avoid locking the singled-out vertex as
it has a higher chance of being of high degree. For example, the infinite vertex will be locked
only when a thread needs to modify the incident cell it points to. Similarly, performing the
locate step in a surfacic data set will likely lock vertices which are on the same sheet as q.
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Figure 8: Speedups for 3D Delaunay triangulation.

Experimental results We have implemented our parallel algorithm in 3D using the sim-
ple locking strategy.6 We carried out experiments in 3D on five different point sets, including
two synthetic and three real-world data. The synthetic data consist of evenly distributed
points in a cube, and 1 million points lying on the surface of an ellipsoid of axes lengths
1, 2 and 3. The real instances are composed of points on the surfaces of a molecule, a
Buddha statue, and a dryer handle containing 525K, 543K and 50K points respectively. For
reference, the original sequential code computes a triangulation of 106 random points in
16.57s.

Running time measurement has proven very noisy in practice, especially for small in-
stances. For this reason, we iterated the measurements a number of times depending on the
input size.

Figures 8(a) and 8(b) show the achieved speedups. We observe that a speedup of almost
5 is reached with 8 cores for 105 random points or more. However, we note that the surfacic
data sets are not so positively affected, and we blame the simple locking strategy for that.

Tuning parameters In order to empirically select generally good values for the pa-
rameters which determine the size of S0 (we chose 100p, where p is the number of threads)
and the interleaving degree (we chose 2), we have studied their effect on the speedup as well
as the number of retreats. Figures 9(a) and 9(b) show the outcome of these tests for the
random data set, while Appendix A provides figures for other input. A small value like 2 for
the interleaving degree already provides most of the benefit of the technique. The bootstrap
size has no significant influence on the running time for large data sets, but it affects the
number of retreats which may affect small data sets.

6We lacked time to properly implement and benchmark the improved locking strategy, but we plan to
show its results instead in the final version of paper, if the improvement is here as planned.
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Figure 9: Evaluating tuning parameters for 3D Delaunay triangulation.

8 Conclusion and future work
We have described new parallel algorithms for four fundamental geometric problems, espe-
cially targeted at shared-memory multi-core architectures, which are increasingly available.
These are d-dimensional spatial sorting of points, kd-tree construction, axis-aligned box
intersection computation, and bulk insertion of points in Delaunay triangulations. Exper-
iments in 3D show significant speedup over their already efficient sequential original coun-
terparts, as well as good comparison to previous work for the Delaunay computation for
problems of reasonnable size.

In the future, we plan to extend our implementation to cover more algorithms, and then
submit it for integration in CGAL once it is stable enough, to serve as a first stone towards
a parallel mode which CGAL users will be able to benefit from transparently.
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Appendix

A Tuning the parallel Delaunay algorithm
We have shown that our algorithm scales well on random distributions and some surfacic
data sets. We introduced the bootstrap size and interleaving degree as tuning parameters
which are important in controlling the number of retreats, and we have presented their effect
for 131K random points. In this section, we provide several other figures showing detailed
measurements on the effect of the tuning parameters for the Delaunay algorithm on various
inputs. In addition, we show the breakdown of the running time of our algorithm over
different instances.

We tried out different bootstrap sizes (see Figure 10), as well as different interleaving
degrees (see Figure 11). For the bootstrap, note that a value of 100p already gives enough
locality for up to 8 threads to work. It can be noted that even a single increment in the
interleaving degree was sufficient to obtain a significant reduction on the number of retreats.

We also experimented with several (close-by) vertices sharing a lock, trying to save time
on acquisitions and releases. However, the necessary indirection and the additional lock
conflicts counteracted all improvement. Figure 12 illustrates the performance degradation
introduced by using this mechanism (even with only one vertex per lock using the generic
code). Figure 13 shows the effect of increasing the number of vertices per lock.

The cost of the algorithm can be broken down into several parts. These include the
locate and update steps, as well as the bootstrap and spatial sort. Updating the triangu-
lation requires, in turn, the determination of conflicting cells and the construction of new
tetrahedra. There is also a minor part of time spent in copying points to a local array, and
shuffling them randomly. All these tasks are performed in parallel. Figure 14 shows this
breakdown for building the triangulation of 10M random points. It illustrates that point
location and the Bowyer-Watson algorithm (shown as find conflict and create cells)
are the main time consuming steps. The algorithm has approximately mantained the same
behavior for random points, Buddha and molecule surfaces, achieving good scalability. It
slows down, however, in the dryer handle and ellipsoid cases. This reveals the major defi-
ciency of the current implementation, that of the infinite vertex which is connected to all
points on the convex hull. So, in the ellipsoid case, the insertion of any point requires locking
the infinite vertex. The dryer handle also shares this property, but in a minor scale. This
can be observed in Figures 14(d) and 14(e).
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(d) Ellipsoid.

Figure 10: Algorithm performance on different data sets with bootstrap sizes ranging from
8p to 1024p . Because of huge contention, dryer handle tests were carried out with bootstrap
size starting at 64p.

INRIA

in
ria

-0
03

43
80

4,
 v

er
si

on
 1

 - 
3 

D
ec

 2
00

8



Parallel Geometric Algorithms for Multi-Core Computers 25

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Sp
ee

du
p

1 2 4 8 16

0.01

0.1

1

10

2 thr 3 thr 4 thr 5 thr 6 thr 7 thr 8 thr

%
 o

f R
et

re
at

s

(a) Molecule.

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p

1 2 4 8 16

0.01

0.1

1

10

100

2 thr 3 thr 4 thr 5 thr 6 thr 7 thr 8 thr

%
 o

f R
et

re
at

s

(b) Happy Buddha.

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

Sp
ee

du
p

1 2 4 8 16

1

10

100

1000

2 thr 3 thr 4 thr 5 thr 6 thr 7 thr 8 thr

%
 o

f R
et

re
at

s

(c) Dryer handle.

0.1

0.2

0.3

0.4

0.5

Sp
ee

du
p

1 2 4 8 16

10-4
10-3
0.01

0.1
1

10

2 thr 3 thr 4 thr 5 thr 6 thr 7 thr 8 thr

%
 o

f R
et

re
at

s

(d) Ellipsoid.

Figure 11: Performance of our algorithm with interleaving degrees 1, 2, 4, 8, and 16.
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Figure 12: Speedups and percentage of retreats during the construction of the 3D Delaunay
triangulation of 106 random points using individual and shared (1 vertex per lock) locking
strategies. In both configurations, we have adopted bootstrap and interleaving degree equal
to 100p and 2, respectively.
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Figure 13: Algorithm runtime varying the number of vertices per lock.
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(a) Random distribution of 107 points.
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(b) Molecule.

 0

 2

 4

 6

 8

 10

 12

 14

seq 1 thre 1 thr 2 thr 3 thr 4 thr 5 thr 6 thr 7 thr 8 thr

Ti
m

e 
(s

ec
on

ds
)

locate
find conflict
create cells

bootstrap
spatial sort

random shuffle
copy

others

(c) Happy Buddha.
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(d) Dryer handle.
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Figure 14: Detailed profiling of the time spent in the various phases of the 3D Delaunay
algorithm with bootstrap size 100p and interleaving degree 2.
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