
GLUING VERTEX UNFOLDINGS OF TRIANGULATED MESHES

BRITTANY TERESE FASY AND DAVID MILLMAN

Abstract. We present a system for creating an edge-unfolding of a trian-
gulated simplicial manifold from a vertex-unfolding by gluing edges, while
maintaining two rigid geometries. We implemented a known vertex-unfolding
algorithm as well as several gluing techniques which we created. The entire
project consisted of a total of 11, 280 lines of code.

1. Introduction

The polyhedral unfolding problem can be described as follows: Can a polyhedra
in R3 be unfolded into a simple polygon in R2? The problem is easily stated for
unfolding a polyhedra in 3-dimensional space to a polygon in 2-dimensional space,
but the ideas can be extended to higher dimensions. In this paper, we present and
contrast several options for edge gluing to re-connect the disconnected interiors
created by a vertex unfolding.

2. Vertex Unfolding

We focus on unfolding a simplicial orientable 2-manifold M with n triangular
facets. For example, we will unfold a polyhedra in 3-space. We will now briefly
describe the topological vertex unfolding algorithm presented in [4], and the modi-
fications that we made for our implementation.

The first step of the algorithm is to create a tree graph τ where the nodes store
the faces of M , and two nodes are connected if the two corresponding faces share
an edge. We constructed this tree by choosing a starting face and using a depth
first search. Since we began with a 2-manifold M , we know that all faces of M will
be in τ .

The next step in the algorithm is to create a scaffold s, a graph where the nodes
are the faces and vertices of M , each face-node has degree two and all vertex-nodes
(except potentially two) have an even degree. The algorithm for computing the
scaffold is given in the proof of Lemmas 3 and 4 of [4]. We have added the condition
that the edges of the scaffold are directed. In doing so, we must account for the
orientation of the edges when creating and connecting scaffold paths and cycles. In
the end, we have implicitly created a (non-crossing) Euler walk while constructing
s. The resulting walk will start by going into the face at the beginning of the path
(or the root of Υ if such a face does not exist), and will end by leaving the face at
the end of the path (or the face previous to the root of Υ).

The vertex unfolding is equivalent to a path p on the surface of the the original
mesh M such that: p only visits each face once, and p enters and leaves a face
through a vertex (which can be visited any number of times). The output of this
algorithm with be an alternating list of vertex and face ids:

L = {v0, f0, v1, . . . , fn, vn+1}
1



2 BRITTANY TERESE FASY AND DAVID MILLMAN

that specifies how the triangles will be laid out. We will say that two faces f, g
are adjacent on L if there is only one vertex vi between f and g in L. This path
is a simple path if we consider parts of the path that meet at a vertex to be non-
intersecting since they do not cross at the vertex.

3. Flattening the Unfolding

The above algorithm describes how to toplogically unfold a polyhedra. Next, we
describe the geometry of this unfolding which projects the tree manifold Υ onto R2

using the triangle congruency preserving algorithm described below.
Let Γ = {γ0, . . . , γn} be the result of laying out all n triangles as specified by L.

In order to correctly construct the set of triangles in the plane after unfolding, we
must preserve the geometry for each triangle, fi of the original manifold M such
that γi is congruent to fi. Suppose we have laid out the first i facets: f0, . . . , fi−1,
and would like to add fi to the triangle strip. We know that fi = t for some
t ∈ M , and let pi, qi, ri be the vertices of fi. Without loss of generality, assume
that vi = pi and vi+1 = qi where vi and vi+1 are the vertices directly before and
after fi in L. We seek to find the vertices p′i, q

′
i, r

′
i of γi, the triangle corresponding

to fi in Γ. We first note that vertex vi was placed when laying out triangle γi−1

(or was predetermined if i = 0), thus p′i = q′i−1.
Now, we wish to lay the triangle γi in its own vertical slab. To do so, we let q′i

be the right most point of γi, and compute the new position of r′i by orienting the
triangle in the plane. We are now are able to rotate the triangle around the point
p′i until we find the layout desired. To remove this degree of freedom, we add the
following constraint on the x-coordinates of the vertices: 2r′i.x = q′i.x − p′i.x. In
other words, the x-coordinate of r′i will be half way between the x-coordinates of q′i
and r′i.

The following corollary follows from this restriction:

Corollary 3.1. The geometric layout produced by this algorithm is unique for a
given vertex unfolding.

4. Edge Gluing Algorithms

In a vertex-unfolding, the resulting planar polygon is connected, but the interior
may be disconnected. We now consider different methods for re-connecting the
components with disconnected interiors.

As mentioned above, the output of the vertex unfolding algorithm is a list L that
specifies how the triangles will be laid out. Here, we note that we may not assume
that fi and fi+1 share an edge in the original manifold M , however:

Lemma 4.1. In the vertex unfolding L, there exists at least one vertex vi such that
fi and fi+1 share an edge.

Proof. Suppose, by contradiction, that all pairs of faces f, g that share an edge in
M , f and g are not adjacent on L. Without loss of generality, suppose that f
appears before g in L. We now define the tight path: Lfg = {f, vk, ..., vj , g}, which
is a path contained in L that starts at f and ends at g. We will define Cfg to be
Lfg with v added to the beginning and the, where v is a shared vertex of f, g. If
the face immediately following g in L is inside Cfg, then create the cycle Cf ′g′ by
letting g′ = fn and f ′ be any face that shares an edge with g′. See Figure 1 for an
illustration.



GLUING VERTEX UNFOLDINGS OF TRIANGULATED MESHES 3

g

f f ′

fn

Figure 1: Creating the Cycle Cfg

Now, let h be a triangle on or inside the cycle Cfg, then we know that h is after f
in L since L is a simple path through the faces of M . If there were no such triangles,
then that would mean that Lfg = {f, vk, g}. And so, f, g would be adjacent on L.
Similarly, if there was only one such triangle h, then Lfg = {f, vk, h, vj , g}. If vk

is not a vertex of g, then the triangle defined by the vertices vk, vj , v, where v is a
shared vertex of f, g must exist interior to the cycle. Otherwise, f, h and g, h are
two pairs of adjacent faces in L.

And so, we can assume that there are at least two triangles on or inside the cycle
Cfg. Thus, Lfg = {f, vk, h1, vk+1, h2, .., vj , g}. Since vk 6= vk+1, we know that at
least one of the faces that shares an edge with h1 must be in Lfg. We will call
this face hi. Again, we have found: Lh1,hi = {h1, vk+1, . . . , hi}. From this, we can
find Ch1,hi , which means that we have a set of faces contained in a simple cycle
such that no faces are adjacent in Ch1,hi and hence in L. If we continue to find
smaller cycles in this manner, we will eventually have one triangle other than f, g
in the cycle, which would mean that triangle is adjacent to its neighbor, which is a
contradiction. �

We call two faces that share an edge in M , and appear in L with only one vertex
in between a potential gluing. In practice, we have seen that the number k of
potential gluings of adjacent faces in p is actually much more than one. In one
model, we have 54 of the 99 adjacent faces in p were potential gluings. In fact, at
least half of all adjacent faces were potential gluings in all models that we used.

Below, we describe edge-gluing techniques for vertex unfolding. These algorithms
try to connect faces fi, fj of L by re-connecting their shared edge (if such an edge
exists). If this gluing causes another piece of the unfolded manifold to overlap,



4 BRITTANY TERESE FASY AND DAVID MILLMAN

we will not re-attach this edge. Before describing three different algorithms for
re-connecting edges we define some terminology.

At each vertex v of L, v separates the scaffolding into two arms. The left arm
is defined to be all faces that are before v in L. Likewise, the right arm is all faces
that appear after v in L. The length of an arm is the number of triangle faces that
compose the arm.

4.1. Validating a Glue-Step. In the algorithms, we choose a vertex vi in the
scaffold L and attempt to re-attach the faces fi−1 and fi. Lemma 4.1 shows that
at least one such vertex exits. We will call a vertex vi a potential gluing vertex if
fi−1 and fi share an edge in M .

Lemma 4.2. If vi is a potential gluing vertex, then the faces can be rotated about
vi until the two edges align without intersecting fi−1 with fi.

Proof. We first note that we started with an orientable 2-manifold. Thus, doing
DFS on the exterior will find all exterior faces. And so, when the triangles are laid
out, all orientations align. Second, we note that since all faces are triangles, the
faces are convex.

These two facts combine to show that the gluing of these two triangles is feasible.
�

The lemma above says that the two faces can be glued without fi−1 intersecting
fi. Although the two triangles can now be attached without intersection, this may
cause collisions in the left and right arms of vi. Thus, we will explore how this
gluing would affect the remainder of the manifold.

Let ∆l be the left arm at vertex vi, and ∆r be the right arm at vi. For simplicity
of explanation, we will assume that ∆l will not change; therefore, we will glue the
edge ei by rotating ∆r about vi until the shared edge aligns. Then, we check to
see if any triangle in ∆l intersects any triangle in ∆r. We have explored several
options for this collision detection, including testing to see if the convex hull of ∆l

intersects the convex hull of ∆r. We have decided that checking all O(k2) possible
triangle collisions was the best option as it is correct and complete. We note that
at best, this algorithm has O(k2) triangle collisions at each step for each vertex in
L. Since k is rather small (usually less than 500), the total time is not significant.

We find the new vertices that would form based on rotating about vi as described
and test to see if there exists a vertex in ∆r that lies within any triangle of ∆1. If
this check fails, then these edges cannot be glued back together with the present
geometries on ∆l and ∆l. Otherwise, we validate this potential gluing, and update
the unfolding Γ.

4.2. Algorithms. The vertices of L are the locations in the unfolding where two
components of the unfolding are adjacent, but have disconnected interiors. We have
explored several options for re-connecting these components while preserving the
vertex connections specified by L.

• Roll-up We glue two faces of Γ by connecting the faces in order from v0

to vn, where vi is the ith vertex of L. For each vi, the faces fi and fi−1

are validated for gluing as specified in Section 4. If a gluing exists and
does not cause a collision, γiγi+1 is glued, and the shorter arm is rotated
accordingly.



GLUING VERTEX UNFOLDINGS OF TRIANGULATED MESHES 5

• Binary Splitting We will attempt reconnecting the unfolding at vertex vn/2

and then recurse on the two subsets of vertices : v1 . . . vn/2 and vn/2 . . . vn.
Alternatively, recursing on the two subsets could precede the reconnection
attempt at vertex vn/2.

• Randomized Algorithm We will choose a random ordering on the vertices v1

through vn. Then, we will attempt connecting the unfolding in the order
specified by this ordering.

Above, we have described the three basic algorithms with one-pass. For each al-
gorithm, we could make a second (or third, etc.) pass to attempt reconnecting at
vertices that separate two components in Γ.

Options for re-connecting the components with disconnected components are
discussed in Section 7.

5. Analysis

Of the three techniques described above, we have seen that the Roll-Up per-
formed the best, while Randomized performed the least number of gluings. Figure
2 shows the unfoldings resulting from the three methods on a triangulated cube.

1

20
0

5

3

2
6

6

4

5 4

5

26
10

1

62
11

1

06
3

3

7

0 8

4

73
9

6

0

7 2

7

46
5

3

5

4 7

0

2

3 1

D
e
m

o
 V

e
rs

io
n

(a) Vertex Unfolding

1

2

0

0

53

2

6

64

5

4

5

2

6

10 1

6

2

11 1

06

3
3

7

0
8

4

7

3

9

6

0
7

2

7
4

6

5

3

5
4

7

0

2
3

1

D
e
m

o
 V

e
rs

io
n

(b) Roll Up

1

2

0

0

5

3

26

6

4

54 5

26
10

1

62
11

1

06
3 3

7

0 8
4

7

3

9

6

0 7
2
7 4

6

5

3

5
4

7

0

2
3

1

Dem
o Vers

ion(c) Forward Binary

1

2

0

0

5

3

2

6

6

4

5

4

5

2

6

10

1

6

2

11 1

06

3
3

7

0
8

4

7

3

9

6

0
7

2

7
4

6

5

3

5
4
7

0

2
3
1

D
e
m

o
 V

e
rs

io
n

(d) Random

Figure 2: Unfoldings



6 BRITTANY TERESE FASY AND DAVID MILLMAN

Table 1 and Table 4 show the statistical results of vertex-unfolding and edge-
gluing for three manifolds using the Roll-up and the backward binary splits tech-
niques. Tables 2 and 3 show the results for the other two techniques. The numbers
for the randomized algorithm are averaged over several trials. In these tables,

Table 1: Roll-Up Experimental Results

n− 1 k m g c

Tetrahedra 3 3 1 3 100
Cube 11 5 1 5 50

Double Torus 99 57 1 17 41
Duck 499 260 1 155 31

Table 2: Forward Binary Splitting Experimental Results

n k m g c

Tetrahedra 3 3 1 2 50
Cube 11 5 1 3 33

Double Torus 99 57 1 33 34
Duck 499 260 1 131 26

Table 3: Backward Binary Splitting Experimental Results

n k m g c

Tetrahedra 3 3 1 3 100
Cube 11 5 1 3 33

Double Torus 99 57 1 35 36
Duck 499 260 1 137 27

Table 4: Randomized Experimental Results

n k m g c

Tetrahedra 3 3 1 3 100
Cube 11 5 1 3 33

Double Torus 99 57 1 31.5 32
Duck 499 260 1 139 28

let n, k be as previously defined: n is the number of triangular facets and k is the
number of potential gluings that exist in the vertex-unfolding. We use n− 1 in the



GLUING VERTEX UNFOLDINGS OF TRIANGULATED MESHES 7

tables since there are n − 1 pairs of adjacent faces in L. In addition, let m be the
number of iterations of gluing attempts, and g be the number of gluings that were
actually made. Finally, c is the percentage of an edge unfolding that was made,
assuming one exists.

While we expected randomized to perform better, the structure of the result of
gluing the vertex unfolding is highly affected by the ordering of gluing attempts.
Thus, random gluing is not a reliable way to perform these operations. The back-
ward binary splits consistently performed more poorly than the forward binary
splits, which is also the opposite than the expected results.

In all of the above mentioned algorithms, the geometries were stiff and we visited
each vertex once to see if an edge gluing were possible. We now evaluate the
experimental results of a multipass algorithm. Table 5 shows the results. Multipass

Table 5: Multipass Experimental Results

n k m g c

Tetrahedra 3 3 1 3 100
Cube 11 5 3 9 83

Double Torus 99 57 2 45 46
Duck 499 260 4 198 39

did improve the percentage of the edge unfolding that was glued, but we see that
more improvement can still be made. One such option could be plucking a face off
the end and placing it in an appropriate position. In addition, we could allow for
more than one degree of freedom.

6. Conclusion

Although we limited ourselves by a stiff geometry on the arms, we did see that the
algorithms performed rather well, with connecting more than twenty-five percent
of an edge-unfolding with one pass, and the multi-pass algorithm improved upon
those percentages.

7. Future Direction

The algorithms described above are limited in two ways. First, we only allow for
gluing of edges of currently adjacent faces. Also, we would like to explore options
that break a decision that was previously made. For example, we could pluck the
first or last face off and attempt gluing it to an edge that is not on an adjacent face
in Γ.

Second, we reject a potential gluing at vertex i if the current geometries to the
left of and to the right of vertex i would overlap. Perhaps a slight adjustment of
the geometries of the arms would allow for more gluings.

There are also two theoretical results that we are currently investigating. Lemma
4.1 lends itself to the possibility that we can construct a vertex unfolding for an
arbitrary manifold that would guarantee log(n) potential gluings at vertices, we
would like to investigate the existence of such an algorithm. Also, Lemma 4.1 does
not guarantee that the potential gluing that we have will be a valid gluing, but we
would like find necessary and sufficient conditions for a gluing to exist.



8 BRITTANY TERESE FASY AND DAVID MILLMAN

Finally, we would like to explore how adding tabs to the faces would affect
the resulting unfolding. Since we would have to leave room near an edge for a
reasonable-sized tab, adding this feature could invalidate certain gluings.

References

[1] T. Biedi, E. Demaine, M. Demaine, A. Lubiw, M. Overmars, J. O’Rourke, S. Robbins, and S.
Whitesides. Unfolding Some Classes of Orthogonal Polyhedra. in Proc. 10th Canadian Conf.
on Computational Geometry, Aug. 1998, pp. 7071.

[2] T. A. Brown, Hamiltonian Paths on Convex Polyhedra. unpublished note, the RAND Cor-
poration, August, 1960.

[3] E. D. Demaine, Folding and Unfolding Linkages, Paper, and Polyhedra. In Revised Papers
From the Japanese Conference on Discrete and Computational Geometry (November 22 - 25,
2000). J. Akiyama, M. Kano, and M. Urabe, Eds. Lecture Notes In Computer Science, vol.
2098. Springer-Verlag, London, 2001, pp. 113-124.

[4] E. Demaine, D. Eppstein, J. Erickson, G. Hart, and J. O’Rourke, Vertex Unfoldings of
Simplicial Manifolds. SoCG 2002.


