SPECS: A Lightweight Runtime Mechanism for
Protecting Software from Security-Critical Processor Bugs

Matthew Hicks

University of Michigan
mdhicks@umich.edu

Cynthia Sturton

University of North
Carolina at Chapel Hill

csturton@cs.unc.edu

Abstract

Processor implementation errata remain a problem, and
worse, a subset of these bugs are security-critical. We classi-
fied 7 years of errata from recent commercial processors to
understand the magnitude and severity of this problem, and
found that of 301 errata analyzed, 28 are security-critical.

We propose the SECURITY-CRITICAL PROCESSOR ER-
RATA CATCHING SYSTEM (SPECS) as a low-overhead so-
lution to this problem. SPECS employs a dynamic verifi-
cation strategy that is made lightweight by limiting protec-
tion to only security-critical processor state. As a proof-of-
concept, we implement a hardware prototype of SPECS in
an open source processor. Using this prototype, we evalu-
ate SPECS against a set of 14 bugs inspired by the types
of security-critical errata we discovered in the classification
phase. The evaluation shows that SPECS is 86% effective as
a defense when deployed using only ISA-level state; incurs
less than 5% area and power overhead; and has no software
run-time overhead.

Categories and Subject Descriptors C.0 [General]: Hard-
ware/software interfaces; C.0 [General]: System architec-
tures; K.6.5 [Security and Protection]: Invasive software
(e.g., viruses, worms, Trojan horses)

Keywords Processor errata; hardware security exploits;
security-critical processor errata

1. Introduction

Modern processors are imperfect. Processors are built from
millions of lines of code [42], yielding chips with billions
of transistors [22]. Verifying the functional correctness of
hardware at such scales remains intractable. The resulting
gaps in functional verification mean that today’s production

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS ’15, March 14-18, 2015, Istanbul, Turkey.

Copyright is held by the owner/author(s).

ACM 978-1-4503-2835-7/15/03.

http://dx.doi.org/10.1145/2694344.2694366

Jonathan M. Smith

University of Pennsylvania
jms@cis.upenn.edu

Samuel T. King

Twitter, Inc.
sking@twitter.com

Catch All Catch Security- Low
Bugs? Critical Bugs? Overhead?
SW-only X X v
HW-only v 4 X
SPECS X v v
SPECS+SW v v v

Table 1: The design space for catching processor bugs: existing software-
only approaches are limited, but practical; existing hardware-only ap-
proaches are powerful, but impractical; and SPECS, combined with ex-
isting software approaches, is both powerful and practical.

hardware typically ships with bugs. For example, the errata
document for Intel’s Core 2 Duo processor family [20] lists
129 known bugs.

Some processor bugs have the potential to weaken the se-
curity of software by allowing unprivileged code to modify
or control privileged processor state. We deem these bugs se-
curity critical (we do not claim that this set is unique). While
some effects of bugs are detectable by software through pe-
riodic checks [8, 27] or special encodings [6, 40], other
processor bugs affect software in a manner that software
cannot detect practically. Such bugs are security-critical be-
cause they affect a critical subset of processor functionality
trusted by the software tasked with detecting and recovering
from imperfections. One example of a security-critical bug
is a design flaw in the MIPS R4000 processor that allows
user-mode code to control the location of an exception vec-
tor [26]. The effect of this bug is user-mode code that runs at
the supervisor level—privilege escalation.

These types of flaws compromise otherwise correct
software—especially software that implements security
policies. There are many documented examples [4, 5, 29—
32] of the impact security-critical bugs have on software.
Software-only patching approaches have been explored
(e.g., microcode [16, 43], re-compilation [28], and binary
translation [35]), but are not able to address all processor
bugs [33]. Further, many of the existing patching mecha-
nisms incur large performance penalties [38, 39], mainly
due to the coarse granularity and heavyweight nature of their
consistency checks.

AMD Sub

A
1
1
|
1
1
|
1
1
1
1
|
1
I

l'.‘ IsA
D state

l (@)

Assertions -

design time run time

Figure 1: Processor design flow with SPECS: (a) Hardware description
language implementation of the instruction set (b) At some point during de-
sign, a bug is introduced. (c) Assertions that implement SPECS invariants
are added to the processor, with taps directly on the outputs of ISA state
storage elements. (d) To squash in-flight state, SPECS adds write gating to
the inputs of ISA state storing elements and attaches the result of dynamic
verification to the exception logic, which triggers existing recovery/repair
software in the event of an invariant violation.

Alternatively, hardware-based bug defenses can address
all processor bugs using checks on every cycle, but this com-
prehensiveness comes at a prohibitive cost in terms of hard-
ware area and power. One example illustrating the tradeoffs
of hardware patching mechanisms is Diva [1]. Diva relies on
modular redundancy; a second formally-verified but lower-
performance processor core checks the calculations of the
buggy, high-performance core. Diva can protect against all
processor bugs, but is complex (potentially creating new pro-
cessor bugs) and has a high hardware cost. A second ex-
ample is Phoenix [37], which detects potentially inconsis-
tent processor state by comparing the hardware-level state of
the processor to known buggy state values; Phoenix requires
more hardware than Diva and cannot respond to unknown
bugs.

Rather than incur the costs of protecting software from
all processor bugs, we propose a hybrid approach, shown in
Table 1: SPECS adds a small amount of additional hard-
ware to the processor that dynamically verifies a subset
of processor functionality. The goal is to protect software
from security-critical processor bugs, especially those that
it cannot protect itself from efficiently. SPECS works by
enforcing instruction-set-specification-derived invariants on
security-critical processor state dynamically. The invariants
are enforced by a series of simple assertions in hardware
(Figure 1(c)). The assertions analyze ISA-level state and
events to validate in-flight (i.e., not yet visible at the soft-
ware level) ISA-level state updates. If in-flight state vio-
lates a SPECS invariant, a combination of assertions fire
that then triggers an exception that squashes the inconsistent
in-flight state (Figure 1(d)). From here, existing software re-
covery/repair mechanisms take over—while SPECS contin-
ues to work in the background. Essentially, SPECS acts as
an interposition layer for a range of existing processor repair
and recovery approaches that allows software to execute past
security-critical bugs safely.

1
Recovery i
Software | "pepair ID# Synopsis Class jass
418 Incorrect translation tables used
561 Incorrect page walks MA
731 Using large pages causes incorrect 10 address trans-

lations

77 Using unaligned descriptor table allows software to XR
jump past the end of the table without causing an
exception

170 May use instructions from old page tables pointed to
by old CR3

578 Branch prediction causes invalid control flow

639 CALL instruction treated as a NOP

776 Branch prediction causes invalid control flow

144 Shadow RAM not invalidated

784 Control register data leaked through load operation

165 Guest can clear data in VMCB

503 Writes to APIC task priority register use the wrong
register IU IL

573 Instruction pointer updated incorrectly

734 Incorrect data stored to and past VMCB

770 Privilege escalation

171 Execute breakpoint handler with mixed guest and
host state

248 TLB pages not invalidated

342 Interrupts disabled for guest

385 Incorrect error address reported

401 Hypervisor doesn’t get correct IP

440 CR3 not saved correctly U IX

563 Flags not stored correctly in VMCB

564 Auto halt flag not set in SMM save state

659 VMCB flag bit not cleared

691 Cache not invalidated correctly

704 Incorrect IP stored

738 Incorrect SP stored in VMCB

744 A CC6 transition may not restore trap registers

EI

IR

Table 2: Security-critical errata mined from AMD processors manufactured
between 2006 and 2013. The security-critical errata fit into five classes: MA
(arbitrary memory access), XR (exception related), EI (execute incorrect
instruction), IR (incorrect results), and IU (invalid register update). Further,
there are two types of IU: IL (illegal) and IX (incorrect).

We make three contributions in this paper:

e We identify and classify security-critical errata from re-
cent commercial processors and discover that these bugs
involve invalid updates to privileged ISA-level state,
which is updated in a few simple ways (Section 2).

e We introduce a lightweight dynamic-verification strategy
against security-critical processor bugs, providing an in-
trospection point whenever security-critical state is up-
dated outside the specification (Section 3).

e We implement (Section 4) and evaluate (Section 5)
SPECS, showing that it is possible to protect software
from a range of realistic security-critical processor bugs.
The evaluation shows that SPECS: (1) is able to detect
86% of the implemented processor bugs using only ISA-
level state; (2) requires less than 5% additional hardware;
and (3) has no software run-time overhead. !

' We make the errata used for our analysis and our hardware and software
source code available publicly [19].

2. Security-Critical Errata

Existing work on processor bugs as security vulnerabilities
takes the approach of finding a single processor bug and
realizing a usable software-level attack with that bug as a
foothold [3, 11, 12, 23]. While this level of analysis high-
lights the threat of a specific security-critical processor bug,
it does not give an idea of how pervasive security-critical
bugs are, their range of effects, or what they have in com-
mon. We take a wider approach in an attempt to learn about
security-critical bugs in general and to guide evaluation of
our detection mechanism SPECS.

We took a systematic approach to identifying security
vulnerabilities in processors. First, we collected the errata
documents from the most popular commercial desktop, mo-
bile, and embedded processors. To place a reasonable limit
on this work, we limited ourselves to errata documents cov-
ering processors released in the last seven years (i.e., since
2007). For each errata document, we read the vendor’s de-
scription of each erratum and determine if it represents a bug
that can be used to allow unprivileged software to gain ac-
cess to or control the behavior of privileged state of the pro-
cessor in a way that contradicts the ISA. If the erratum is
a possible attack foothold, we mark it as security critical.
When errata documents are unclear about how software trig-
gers the erratum, we mark it as security critical if, and only
if, we believe it possible for a user process or guest OS to
trigger it.

Table 2 gives the results from our classification of AMD
errata. From a total of 301 AMD errata, we found 28 to be se-
curity critical, and split these into 5 classes: [U (invalid regis-
ter update) (64%), EI (execute incorrect instruction) (14%),
MA (arbitrary memory access) (11%), IR (incorrect results)
(7%), XR (exception related) (4%). Figure 2 presents a visu-
alization of the distribution of errata into the five classes.

Since it is not immediately clear from the class names
what properties of a security-critical bug cause it to be in
that class, here is an example bug for each class:

IU - invalid register update: There are two sub-classes of
IU bugs: IL and IX. Regardless of sub-class, this class of
bug is marked by the contamination of a privileged ISA-level
register. The sub-class IL refers to contaminations that low-
privilege software can use to bypass security policies im-
plemented by higher-privileged software (e.g., if a user pro-
cess could execute a sequence of instructions that caused the
processor to execute in supervisor mode). The sub-class IX
refers to when a processor bug causes security-related com-
mands from privileged software to be essentially ignored.
From the perspective of SPECS these two sub-classes are
the same because SPECS focuses on the state itself, agnos-
tic of how it became contaminated.

EI - execute incorrectinsn: This class of bug is marked by
the processor executing a different instruction than a perfect
processor would. In this class, the processor correctly exe-

100 %
’ \ [XR- Exception Related T——1
90 % | IR - Incorrect Results 24|
MA - Memory Access Hmmmmm
o EI - Incorrect Instruction
g 80 % IU - Register Related mmm— |
2 70%
<
2
= 60%
<
£ s0m |
=
3
@2 40%
B
§ 30%
S
&~ 20%
10%

0 %

Figure 2: Class-wise composition of the security-critical errata.

cutes the instruction, but somewhere earlier in the pipeline,
the instruction itself was contaminated. This is usually due
to incorrect control flows caused by the processor bug.

MA - memory access: This class of bug is marked by the
ability for any software to access memory that it should not
have access to given the specification. This includes memory
caches, but does not include valid accesses to shared mem-
ory buffers that were not cleared correctly (see IR).

IR - incorrect results: This class of bug is marked by an
operation returning an incorrect result or not correctly up-
dating the state (micro-architectural or ISA) of the processor
correctly given the executed instruction.

XR - exception related: This class of bug is marked by an
exception being ignored when it should have been handled,
by the handling of an exception that should have been ig-
nored, or by passing control to the wrong exception handler.

3. SPECS Design

SECURITY-CRITICAL PROCESSOR ERRATA CATCHING
SYSTEM (SPECS) is a lightweight, hardware-based ap-
proach to protecting software from the processor bugs that
can compromise system security. SPECS protects against
bugs that affect reads and writes of privileged processor
state. Included in this set are the bugs that software-only ap-
proaches are not be able to protect against. To detect pro-
cessor bugs, it is necessary to know when and in what way
processor state changes. Software-only approaches neces-
sarily rely on privileged state as a key component of their
consistency check implementation. When a security-critical
processor bug compromises this privileged state, then so to
are the consistency checks. Furthermore, SPECS provides
a precise introspection point when privileged state changes,
without which software must rely on polling or other, more
coarse grain, introspection points (e.g., page faults); both de-
crease common case performance and leave gaps that make
the system vulnerable.

SPECS catches security-critical processor bugs precisely
by enforcing a select set of invariants dynamically. SPECS
invariants are properties over architecturally visible proces-
sor state and events (i.e., ISA-state). They are derived from
the instruction set specification and govern how and when
updates to privileged processor state can occur. An example
of the type of bug that SPECS will catch is privilege escala-
tion: a change in processor mode from low to high privilege
that is not consistent with the instruction set specification.
Privilege escalation bugs have occurred in recent commer-
cial processors (see Section 2).

3.1 An example invariant and assertion

We use the privilege escalation bug to help illustrate the
concepts of a SPECS invariant and the implementation of
that invariant using a combination of simple assertions. To
start, we describe privilege escalation as a violation of the
following invariant: Iy = A change in processor mode
from low privilege to high privilege is caused only by an
exception or a reset.

Invariant I is a statement that the instruction set specifi-
cation says must be true of the system at all points of execu-
tion.

In SPECS, invariants are enforced by composing (with
Boolean operations) one or more simple assertions on ISA-
level processor state. For example, SPECS enforces I in
the following way:

Ao = assert(risingEdge(SR[SM]) — (NPC[31 : 12] = 0) A
risingEdge(SR[SM]) — (NPC[7: 0] = 0) V
risingEdge(SR[SM]) — (reset = 1)).

SR [SM] represents the supervisor mode bit of the proces-
sor’s status register and an exception is indicated by the next
program counter, NPC, pointing to an exception vector start
address. In our implementation (see Section 5), the excep-
tion vector start address is of the form 0x00000X00 (the
“x” indicates a don’t-care value).?

3.2 Design principles
The high-level design of SPECS follows three principles;

1. Maintain current ISA abstractions. SPECS should detect
processor imperfections automatically, without changes
to existing software.

2. Keep the common case fast. SPECS should only inter-

rupt software in the rare case that a processor violates one
of SPECS’s security invariants—precise introspection.

2 This might seem as if it leaves the door open for a processor attack that
escalates privilege while executing at an address that matches the form
0x00000X00, but it does not. Pages in that address range have supervisor
permissions set which implies that code executing in that address range
is already in supervisor mode. If software that exercises a security-critical
processor bug attempts to allow user mode execution of supervisor mode
pages, SPECS includes an invariant to detect such misbehavior.

Software

Figure 3: Flow of detection and recovery in SPECS: 1) Software executes
normally on the processor while invariants implemented using hardware
assertions check the processor’s state for specification violations. 2) A
violation of a SPECS invariant triggers an exception and prevents state
updates. 3) The exception causes any in-flight (i.e., contaminated) state to be
flushed and control passes to existing recovery/repair software. 1) SPECS
continues to protect the recovery/repair software.

3. Be practical. To maximize practicality, we aim to imple-
ment invariants using only ISA-level state. The ISA is
more stable across processor families and less complex
than micro-architectural state. Additionally, SPECS im-
plements invariants using improved versions of industry-
standard assertions.

3.3 Assumptions

SPECS relies on three assumptions. The first is that the
instruction set specification is correct. Ambiguities in the
specification lead to implementation differences, which lead
to security vulnerabilities [45]. For SPECS, the specifica-
tion drives the design and implementation of the invariants;
thus, specification ambiguities can lead to false detections or
worse, missed detections.

The second assumption is that it is possible to dynami-
cally verify the correctness of an ISA-level state update us-
ing only the current ISA-level state and the instruction. This
forms the basis of our approach: SPECS invariants are de-
fined over the proposed ISA-level state update, the current
instruction, and the current ISA-level state. When this as-
sumption does not hold, we have to implement security in-
variants using low-level state (see Section 5 for one excep-
tion) or risk missing bug activations.

Finally, the focus of our work is the pipeline core of the
processor; we assume the memory hierarchy is correct. Note
that we do not foresee any fundamental limitations to ap-
plying the SPECS approach to other units in a processor.
Our experience indicates that the SPECS approach works
well where it is possible to precisely define expected behav-
ior and where there is a subset of critical behaviors that need
protecting.

3.4 SPECS components and interactions
Figure 3 shows the key components of SPECS and their
interactions. Software executes normally on the processor

while assertions in hardware check processor ISA-level state
and events for specification violations. The assertions verify
that a proposed ISA-level state update is valid—i.e., does not
violate an invariant—for security-critical state given the in-
struction and the current (already verified) ISA-level state.
If the proposed ISA-level state update is valid, then: (1)
no combination of assertions fire to signify an invariant vi-
olation; (2) the processor is allowed to commit the pro-
posed state to the ISA level; and (3) execution continues.
On the other hand, if a state update violates an invariant,
SPECS triggers an exception causing any contaminated in-
flight state to be flushed. From this point, existing recov-
ery/repair software can take control as required to push the
state of software forward. Note that SPECS continues to
protect the recovery/repair software; this added safety re-
quires that any recovery/repair approach be able to handle
recursive detections.

3.5 History

Some invariants require more history than the current and
proposed ISA-level state provide. For invariants over con-
trol flow (Section 4) we need to check previous instruc-
tions for valid causes of control flow discontinuities. Valid
causes of control flow discontinuities in our implementa-
tion are branches and jumps; return from exception; system
calls and traps; and exceptions. For exceptions and system
calls/traps (which we treat as exceptions) the assertion logic
doesn’t need any extra history information because the cur-
rent PC informs us whether we got here due to one of the
listed events. For this, we look to see if we are at an address
associated with a exception handler. For return from excep-
tion instructions, we need to know the instruction before the
break in control flow. The remaining control flow disrupt-
ing events require the ability to see the instruction associ-
ated with the current (most recently verified) ISA-level state
to verify that it was a jump or branch. Making the history
problem worse is an architectural feature known as a branch
delay slot. In many architectures, including the one we im-
plement SPECS in, the processor always executes the in-
struction directly after the branch/jump instruction; thus the
instruction after jumps/branches is also executed. The goal
of the branch delay slot is to reduce the number of pipeline
bubbles due to breaks in control flow. This means that when
SPECS’s continuous control flow invariant gets violated, we
have to look back two instructions previous for a branch or
jump instruction.

There are two ways to solve this problem: we can store
the previous two instructions or we can store—and use in our
assertions—the previous two assertion results. We choose to
implement the latter since it requires two extra flip-flops for
each micro assertion that is impacted by a delay slot and one
for those that are not (7 total), since the result of all asser-
tions is a single bit. In comparison, keeping the previous two
instructions around would require 64 additional flip-flops.

Software’s view of ISA state

ISA-level State
Holding Element

d_out—@—=> JH—: —: —: —"

of ISA state |

Invariant
not violated |

SPECS |

Figure 4: Low-level hardware support required for SPECS: SPECS re-
quires direct access to state holding elements (i.e., before any other cir-
cuit manipulates the value) and requires the ability to prevent updates to
ISA-level state in the event of invariant violations. Without either of these,
SPECS misses bugs in our evaluation platform.

3.6 Instruction stability

A preliminary evaluation showed that SPECS missed
security-critical bugs that changed the instruction in the
pipeline. For example, a security-critical processor bug
could change a privilege de-escalation into a no-op, caus-
ing it to be ignored and resulting in a privileged escalation.
SPECS misses such bugs because it must trust the instruc-
tion as a state input. Additionally, there is only a single in-
struction at the ISA-level (SPECS reads the decode stage
version), but in reality each pipeline stage may see a differ-
ent instruction.

To ensure that we can trust that SPECS’s view of the
instruction is what the pipeline sees, we add a micro-
architectural-level invariant that enforces instruction in-
tegrity as it moves through the pipeline. The invariant states
that the instruction loaded from memory is seen at each
pipeline stage. Refer to Section 4 for detailed information
on this invariant.

3.7 Local state taps

It is critical that the assertions get their view of ISA-level
state from as close to the state holding element as possible.
Any logic between the state holding element and SPECS’s
state taps is vulnerable to bugs. In fact, in the first SPECS
prototype, we missed catching bugs (bug 5) due to buggy
logic between the state taps and the state holding element.
Figure 4 shows our general approach to solving this problem.
We find the actual memory that holds the state value, and
read the state directly from that memory’s output. Often
times, this reduces to inserting SPECS’s state taps between
the state holding element and the rest of the processor.

3.8 Invariant state update gating

Similar to where we place SPECS’s state taps, we found that
we need to add write gates directly to the inputs of state hold-
ing elements. It is essential that SPECS squashes in-flight
state when invariants are violated. We do this is by guarding
writes at each privileged ISA-level state element using the

ID SPECS Invariant OVL Implementation

1 Execution privilege matches page privilege always((SR-SM & MMU_SXE) || (SR_SM & MMU_UXE))

2 SPR = GPR in register move instructions
3 Updates to exception registers make sense

posedge(INSN = LMTSPR, SPR = GPR)
posedge((PC & OxFFFFFOFF) = 0, (EEAR = EA) && (EPCR = SR[DSX] ? PPC-4 : PPC) &&

(ESR = (SR & 0xFFFFDFFF)))

Destination matches the target

5 Memory value in = register value out
GPR = MEM_BUS)

6 Register value in = memory value out

posedge(GPR_WRITTEN, GPR_TARGET = (INSN & TARGET_MASK))
posedge((INSN = LLWZ) || (INSN = LLHZ) || (INSN = LLHS) || (INSN = LLBZ) || (INSN = LLBS),

posedge((INSN = 1.SW) || (INSN = 1.SH) || (INSN = 1.SB), GPR = MEM_BUS)

7 Memory address = effective address

posedge((INSN = 1.SW) || (INSN = 1.SH) || (INSN = 1.SB) || (INSN = LLWZ) || (INSN = LLHZ) ||

(INSN =LLHS) || (INSN =1LLBZ) || (INSN = LLBS), ADDR_CPU = ADDR_BUS)

8 Privilege escalates correctly
9 Privilege deescalates correctly

posedge(SR[‘OR1200_SR_SM], (RST = 1) || (PC = 0x00000X00))
posedge(INSN = 1L.RFE, SR[‘OR1200_SR_-SM] = ESR[‘OR1200_-SR_SM]) && posedge((INSN =

LMTSPR) && (INSN_target = SR), SR[‘OR1200_SR_SM] = GPR_SOURCE[‘OR1200_SR_SM])

10 Jumps update the PC correctly
11 Jumps update the LR correctly
12 Instruction is in a valid format

next((INSN = JMP) || INSN = BR), PC = EA, 2)
next((INSN = JMPL) || (INSN = JMPLR), LR = PPC+4, 2)
always((INSN & Class_-Mask) = Class) && ((INSN & Reserved_Mask) = 0)

13 Continuous Control Flow

delta(PC, 4, 4) || assert((INSN = JMP) || (INSN = BR) || (INSN = RFE)) ||

assert((PC & OxFFFFFOFF) = 0)

14 Exception return updates state correctly

next(INSN = L.RFE, (SR = ESR) && (PC = EPCR), 1)

15 Reg change implies that it is the instruction (posedge(GPR_Written, (INSN & OPCODE_-MASK) = (20-2F, 06, 38)) && posedge(GPR_Written,
target (INSN & TARGET-MASK) = GPR_Written_Addr)) || posedge(GPR9_Written, ((INSN & OP-
CODE_-MASK) =JAL) || (INSN & OPCODE_MASK) = JALR))

16 SR is not written to a GPR in user mode
17 Interrupt implies handled

posedge(GPR_WRITTEN, GPR_TARGET # SR)
next((INSN & 0xFFFF0000) = 0x20000000, ((PC & 0x00000F00) = 0xE00) ||

((PC & 0x00000F00) = 0xC00), 1)

18 Instruction not changed in the pipeline

next(/ F_flush & ICPU_ack & I F_freeze, INSN_F = INSN_.MEM) ||

next(I D_freeze, INSN = INSN_F) || next(EX _freeze, INSN_E = INSN)

Table 3: Invariants developed to protect against security-critical processor bugs: The first 14 invariants were developed by only looking at the specification.
The next three invariants were added in response to what we learned in classifying existing commercial processor errata (Section 2). The final invariant was
added after one of our errata-based bugs evaded the initial SPECS implementation (Section 5).

result of SPECS’s invariants. Figure 4 shows how we add
write gating: we add an AND gate to the pre-existing write
enable signal that controls updates to the state item. The
AND gate takes the original write enable and a signal which
takes the value zero whenever any invariant fires. Write gat-
ing causes writes to any protected state to be ignored if the
current execution violates any SPECS invariant.

4. SPECS Invariants

This section details the SPECS invariants for our OR1200-
based prototype.® Table 3 contains an identification number,
concise description, and assertion-level implementation for
each SPECS invariant. These invariants are not ad hoc: 1-14
come directly from the specification, 15—17 come from our
analysis of AMD errata, and 18 comes from our preliminary
evaluation. Additionally, there are fewer errata than there are
security-critical errata because many security-critical have
the same effect (i.e., they are in the same class) even though
the activation mechanism is different and SPECS is con-
cerned only with effect.

3 Since we do not have access to the source code for any AMD processor
covered by our errata analysis, we experiment on the OR1200. The OR1200
is a RISC processor with a Harvard architecture, five-stage pipeline, mem-
ory management unit, and caches—comparable to a mid-range mobile part.

4.1 Assertions

Before tackling the invariant descriptions, it is important
to understand the behavior of the assertions we construct
them out of. In keeping with our design goals, we modify
industry standard Open Verification Library (OVL) asser-
tions [14] so that they are synthesizable (originally, some
were simulation-only). We are able to construct all 18 of the
SPECS invariants using only 4 of the more simple OVL as-
sertions:

® always(expression): expression must always be
true

® edge(trigger, expression): expression must
be true when the t rigger goes from O to 1

® next(trigger, expression, cycles):
expression must be true cycles instruction
clock ticks after t rigger goes from 0 to 1

® delta(signal, min, max): when signal changes

value, the difference must be between min and max, in-
clusive

4.2 Invariant descriptions

Table 4 contains written descriptions of each invariant in
Table 3 and provides details of the OR1200 as needed. It
is numbered to coincide with the ID listed in Table 3.

ID SPECS Invariant Description

1 The privilege of the memory page the current instruction comes from matches the privilege of the processor.

2 Instructions that load a special-purpose register (privileged) with a value from a general-purpose register load do not modify the general-purpose
register value.

3 The OR1200 has three registers that save the state of software when an exception occurs. The EPCR stores the PC at the time of the exception, the
ESR stores the status register (SR), and the EEAR stores the effective address at the time of the exception. This invariant fires when any of these
exception registers are not updated correctly.

4 The register update as the result of executing an instruction is the register specified as the target register by the instruction.

5 In memory loads, the value stored in the target register is exactly the value from the memory subsystem.

6 In memory stores, the value sent to the memory subsystem is exactly the value of the register specified in the store instruction.

7 The address sent to the memory subsystem is exactly the effective address given the GPR values and instruction contents (i.e., addressing mode and
immediate).

8 If the execution privilege, stored in SR, goes from O (user mode) to 1 (supervisor mode), then it must be the result of taking an exception or a processor
reset.

9 The execution privilege goes from 1 to 0 when a value with a 0 in the mode bit position is loaded into SR or when a return from exception is executed
and the mode bit in the ESR is 0.

10 Branch and jump instructions generate the correct effective address and that effective address is loaded correctly into the program counter (PC).

11 Jump and link instructions store the address of the instruction immediately following the delay slot instruction to the link register (LR).

12 The reserved bits of a given instruction are set to 0 for each instruction encoding class

13 The address of the current instruction is the address of the previous instruction plus four. This invariant is a building block used to trigger other
invariants that verify control flow discontinuities.

14 The return from exception instruction causes the PC to be loaded from EPCR and the SR to be loaded from ESR.

15 When a register changes, it must be specified as the target of the instruction.

16 ~ When a target unprivileged register changes, the value written to that register is not equal to the SR.

17 When a software created interrupt occurs the processor passes control to the appropriate exception handler. In the OR1200, the exception handlers are
at fixed address in the start of the system’s address space.

18 Once the instruction fetch stage latches a new instruction, that instruction stays the same as it transitions between pipeline changes. In the OR1200, the
instruction is not needed by the memory or write-back stages, so the invariant only checks up to the execute stage. Additionally, the OR1200 squashes
mid-pipeline instructions by changing the instruction to a special no-op instruction, so we have to gate invariant 18 on a check to see if the instruction
changed to this special no-op.

Table 4: Detailed descriptions of invariants; IDs correspond to the invariant IDs in Table 3.
045 10
delta —
04 - next
. edge mm—
3 always .|
035 - "
=
2
03 g
g 6
<
o 025 ;
=
® 02t o
P]
0.15 £
z
0.1 2
005
0 0

delta 1 2 3 4 5 6 7 8 9 1011

SPECS Invariant

always edge next 12 13 14 15 16 17 18

OVL Assertion

Figure 5: The proportion of each OVL assertion that we use in implement-
ing SPECS invariants. The OVL assertions are ordered left to right in terms
of increasing hardware complexity.

Figure 6: For each SPECS invariant, the number and type of OVL as-
sertions required to implement the invariant and the composition of OVL
assertions.

4.3 Invariant analysis

Figure 5 shows that the most common OVL assertion is
always, followed closely by edge. delta is used only once.
One observation is that the use of an assertion is inversely
proportional to its complexity: we use the simplest assertions
most often. Another observation is that we can implement all

of our invariants using only 4 of the 33 assertions provided
by OVL.

Figure 6 shows how many of each OVL assertion it takes
to construct each SPECS invariant. 13 of the 18 invariants
use only a single type of assertion. For the invariants that
require multiple types of assertions, there is no clear pattern

03

0.25

ISA State ==
uArch State =

0.2

0.15

Ratio

0.1 | —

© U :”l@ %, ",
2 ¢ (3

<
’74;4’ 2,
4 9

005 | —‘ H
. I —
G G %,

Processor State

Figure 7: The ISA and micro-architectural state required to implement the 18 SPECS invariants and a tally of how many times each state item is referenced.

on which types of assertions tend to go together. The most
complex invariants use more assertions, but are no more
diverse with respect to assertion type than simple invariants.

Figure 7 shows the ISA and micro-architectural state that
SPECS invariants rely on when dynamically verifying ISA-
level state updates. The most important state item is the
instruction (INSN) itself—which is why we added invariant
18 to protect the instruction as it moves through the pipeline.
The other important state items are the program counter (PC)
and information about register file updates, i.e., is this a
write (GPR_WR), what register are we updating (GPR_ID),
and what value is being written (GPR_DATA). As it resides
outside of the register file, the status register (SR)—which
contains the mode bit—is also frequently used by SPECS
invariants. To get an idea of what SPECS looks like in an
AMD-class processor, look at the difference between uses of
SR and ESR (the exception-backup of SR). SR is involved
in three times more invariants than ESR even though the
both are privileged and hold roughly the same data. The
difference in popularity comes from the ability to directly
manipulate the SR using software-level instructions, while
the only way to change the value of ESR is to trigger an
exception. We expect this trend to hold for processors of any
complexity: the more ways to update security-critical state,
the more invariants required to protect that state.

Another point to note is that the one micro-architectural-
level invariant tends to use more state than the ISA-level in-
variants. A wider footprint makes the invariant more com-
plex and less portable.

5. Evaluation

To demonstrate that SPECS can detect and recover from a
realistic and diverse set of security-critical processor bugs,
we built a prototype implementation in the OR1200 proces-
sor [34] and tested it against 14 processor bugs modeled af-
ter the classes of errata from Figure 2 and associated bug-

activating programs.* We choose the OR1200 processor be-
cause it is an open source processor implementation of non-
trivial complexity that allows us to build and evaluate our
SPECS design. Ideally, we would implement SPECS in an
AMD processor, but complete, open source implementations
are not available for x86/x64 architectures. The OpenRISC
OR1200 processor is a mature, open source, 32-bit, RISC
processor implementing the OR1K instruction set. It has a
five stage pipeline, separate instruction and data caches, and
support for virtual memory. These traits make it popular in
research prototypes and it has even been used in commer-
cial products [2, 21, 36]. Inside the OR1200, we craft each
of the 14 buggy systems to model the security-critical bug
classes that we mined from recent commercial processor er-
rata (Section 2); this ensures that our test cases represent re-
alistic design defects. For each buggy system, we create a
program that activates the bug, violating some security pol-
icy.

For our prototype, we implemented the 18 invariants de-
scribed in Table 3. The majority of the invariants, 14, come
directly from our analysis of the specification, 3 come from
the results of our AMD errata analysis, and the last invariant
comes from a preliminary evaluation of our SPECS proto-
type. Of the 18 invariants, 17 keep with our goal of using
only ISA-level state.

The goal of this evaluation is to show that SPECS (1) is
versatile enough to detect the activations of a wide variety
of security-critical processor bugs; (2) has low hardware and
software overheads; and (3) supports existing software-only
recovery and repair mechanisms.

5.1 Detecting the errata-based bugs

As shown in Table 5, SPECS assertions correctly detect
all of the errata-based buggy systems. SPECS detects 12
of the 14 bugs (87%) using only ISA-level state. The two

4There is no relationship between the AMD, Bug, and Invariant ID num-
bers.

Bug ID Synopsis Class Detected Pre-recovery Cleanup
1 Privilege escalation by direct access U v Correction
2 Privilege escalation by exception U v Correction
3 Privilege anti-de-escalation g v Correction
4 Register target redirection IU v Correction
5 Register source redirection g v None
6 ROP by early kernel exit g v+ Backtrack
7 Disable interrupts by SR contamination U v None
8 EEAR contamination U v Correction
9 EPCR contamination on exception entry (from PC) IU v Correction
10 EPCR contamination on exception exit (to PC) 1U v None
11 Code injection into kernel EI v Backtrack
12 Selective function skip EI v+ Backtrack
13 Register source redirection IR v None
14 Disable interrupts via micro arch XR v Backtrack

Table 5: Errata-based buggy systems: For each errata-based bug, a description of its effect, its class (from Section 2), whether SPECS can detect the bug
(Detected: v'= yes, + = requires micro-architectural state), and the expected minimum recovery required after SPECS squashes in-flight state: in order of
complexity, None: no special action required; Correction: need to reset some ISA state to a default/safe value; and Backtrack: need to rollback some ISA state

to its previous value.

bugs that bypass the ISA-only invariants do so in the same
way: they change the instruction as it moves through the
pipeline. This bypasses SPECS because its assertions trust
that the instruction is correct. To detect this type of bug we
define an invariant using micro-architectural-level state that
ensures that the instruction the ISA-level assertions see is the
instruction that was loaded from memory. Adding a single
invariant (#18) to ensure instruction integrity is enough to
detect the remaining two bugs (bugs 6 and 12).

5.2 Protection versus time

We believe that because SPECS focuses on the effect of
the problem as opposed to the cause of the problem, pro-
cessor designers will incorporate SPECS in a model where
security-critical bugs from previous generation processors
become SPECS invariants in next generation processors. To
support this point, we investigate how SPECS protects later
processors by looking at the invariants required to protect
earlier processors. For this, we add invariants in the order of
the AMD bug that motivated them. The first 14 invariants
came directly from the specification, before analyzing any
errata. With just these 14 invariants, SPECS detects 7 of the
14 bugs we implement and the chronologically first 11 of
the 28 security-critical errata from recent AMD processors
(39%). After adding an invariant to detect activations of the
12" AMD bug, SPECS detects 12 of the 14 buggy systems
and addresses the first 15 of the 28 AMD bugs (54%). Fi-
nally, after adding an invariant to handle the 16" AMD bug,
SPECS detects all of our 14 bugs and the remaining AMD
bugs (100%). We feel that this result supports our classifica-
tion of AMD bugs into equivalence classes and provides a
good model for the life-cycle of SPECS.

5.3 False detections

In our experiments, there are no false detections given
the final set of SPECS invariants, but it did not start that
way. When it is not possible to precisely define an invariant
for a given security-critical state update, there is a tradeoff
between missing bug activations and firing when no bug has
been activated. SPECS supports erring on either side of the
tradeoff space, but for this paper, we prefer the safety of false
detections. This section presents each initial false positive
and the approach used to eliminate it.

Invariant 3 can produce false detections because of the
limits of implementing the invariant at the ISA level. Invari-
ant 3 verifies that the processor updates the exception regis-
ters correctly in the event of an exception. False detections
occur when an exception interrupts the first instruction in
a basic block (a continuous and contiguous dynamic trace
of instructions). When this occurs, there is no record of the
address that should have been saved to Exception Program
Counter Register (EPCR; it holds the PC to return to after
the exception returns): the invariants only see the current
state and the state about to be committed. Since the instruc-
tion was interrupted by the exception, its state was flushed,
along with it the PC value that should be saved to EPCR.
This means that invariant 3 fires even when the processor up-
dates EPCR correctly—a false detection. We can avoid this
by looking for impending exceptions in the invariant.

To determine the rate of this false detection, we run a
gamut of software on our FPGA-based prototype, including
Linux and MiBench [15] benchmarks. We find that the rate
of false detections is approximately 1 detection per 20,000
instructions. These detections all occur in a single burst
while booting Linux—which is exception heavy (the upper
limit is the rate of exceptions). A deeper analysis reveals
that the most common cause of false detections is jumping

Baseline Minimum All
Logic 7911 LUTs 2.16% 4.26%
State 10549 Bits 2.74% 4.95%
Power 417 W 17% 58%
Delay 13.3 ns 0% 0%

Table 6: SPECS overheads: baseline for the OR1200, Xilinx xupv5-1x110t-
based System-on-Chip compared to the overheads of SPECS with only
the invariants required to detect all bugs in Table 5 (Minimum) and all 18
invariants listed in Table 3 (All).

to an address not in the translation lookaside buffer (TLB).
The OR1200 has software-managed TLBs that handle the
ensuing TLB miss which causes the effective address to be
lost.

Another source of false detections is invariant 1. Invariant
1 fires in a series of bursts early during Linux boot-up, but
then ceases. We find that this is due to Linux not correctly
assigning page protections—an incomplete implementation
of a security policy. Once Linux’s boot-up routines correctly
set page permissions, invariant 1 no longer fires.

5.4 Evaluating the cost of SPECS

Experiments show that SPECS effectively addresses all
errata-based bugs that make up our evaluation platform. Ex-
periments also show that false detections (and by extension,
activations of recovery/repair software) are rare. The goal of
this section is to measure the hardware overhead of SPECS.
We look at all invariants as a group, the relative overheads
of individual invariants, and the relative overheads of each
OVL assertion that SPECS employs.

Table 6 shows less than 5% hardware overhead and no
run-time overhead (in the common case) due to SPECS. Ta-
ble 6 explores the hardware overheads at two design points:
Minimum represents SPECS with only the invariants re-
quired to detect all of the errata-based bugs, while All repre-
sents all invariants being implemented in the OR1200. The
invariants from Table 3 that make up Minimum are 3, 8, 9,
14,15, 17, and 18.

There is a sizable jump in overhead when going from
the 7 invariants in Minimum to all 18 invariants. Figure 8
shows how each invariant contributes to the total overhead of
SPECS. Invariants 3, 5, and 13 stand out as the most costly
invariants. One might assume that these three invariants are
the most complex or require the most OVL assertions, but
by comparing Figures 6 and 8, we see that is not always the
case. For example, invariants 1 and 12 both use relatively
many assertions, but they have relatively low overheads.
This is because these invariants read ISA-level state that is
much smaller than 32-bits. This allows the tools to optimize
the assertions, reducing their gate count.

It is also difficult to determine the hardware cost of a
given invariant due to the different hardware cost of the indi-
vidual assertions. Figure 9 presents the hardware overheads
of the OVL assertions that SPECS invariants use. Figure 9

35

area NN
power I
30 delay .

25

20

Overhead (x always)

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18
SPECS Invariant

Figure 8: Hardware overheads of each SPECS invariant relative to the
OVL always assertion.

45
! always

edge
40 next 7

next 3 ==
35 next | =1

delta 32,8 C——
30 delta32,8 —— |
delta 16,8 C——

delta 164 C——

25

20

Overhead (x always)

0 e | [T

area power delay

Figure 9: Hardware overheads of each OVL assertion relative to the OVL
always assertion. For assertions that have configuration parameters, i.e.,
next and delta, we explore the effects of selecting different parameters. next
X: X is the maximum number of ticks between the triggering event and the
expected event. delta x,y: X is the number of bits in the input data and y is
the number of bits in the maximum allowed delta (e.g., 8 bits = +/-256).

also includes a parameter exploration for the assertions that
are configurable. These results show the the hardware over-
heads vary greatly across assertion types. Fortunately, delta,
the most expensive assertion, is also the least used, while the
most used is the simplest!

5.5 Recovering from invariant violations

SPECS supports existing software-level recovery and repair
approaches by providing precise introspection points when
software activates security-critical processor bugs. To aid
fitting existing recovery and repair approaches to SPECS,
this section provides details on the consistency of ISA-level
state after SPECS squashes in-flight state updates.

Table 5 lists, for each buggy system, the amount of ISA-
level state clean-up necessary post detection. Sometimes
SPECS write gating is enough to ensure a consistent state,

but other times a rollback to the previous state value is
required. There are three distinct levels of state clean-up.
Aside from no correction being required (None), the simplest
clean-up is Correction, which involves resetting the contam-
inated ISA-level state to a safe value (e.g., setting the proces-
sor mode to user mode in the event of a privilege escalation)
and then continuing execution. The most complex clean-up
is Backtrack. Backtrack differs from Correction in that there
is no safe or obvious previous value. This means that the
previous value needs to be restored by the recovery or re-
pair software. One approach to Backtrack is to provide a few
cycles of checkpointing for security-critical state. Another
approach is to recalculate the value by retracing execution.

6. Discussion

Our presentation of SPECS’s implementation and evalua-
tion did not address two important points, namely, scaling
SPECS to x86 class processors and limitations of SPECS.
We address these questions now.

6.1 Implementing SPECS in x86

Section 5 shows that SPECS is effective and efficient at de-
tecting x86-like bugs implemented in a more simple proces-
sor architecture. The longer-term goal, however, is to have
SPECS adopted by commercial processor manufacturers,
thus it is important to address how SPECS scales with pro-
cessor complexity. Lacking an open source x86 implementa-
tion we can augment with SPECS, we address how SPECS
scales in a qualitative manner, but we do expect SPECS to
scale to x86 processors.

We expect SPECS to scale to x86 processors. Complex-
ity in commercial processors stems largely from logic de-
voted to increasing performance—as opposed to the func-
tionality that SPECS must protect. These optimizations add
state below the level of the software interface, i.e., without
changing the architecturally visible state (e.g., out-of-order
execution). SPECS monitors only the architecturally visible
state (e.g., special-purpose registers). This means that x86-
class processors are likely to have proportionally less ISA-
level state than the OR1200 we evaluate with, resulting in
relatively lower overheads due to SPECS. We also expect
SPECS to scale because the types of architecturally visi-
ble state and rules guarding state updates are similar in the
OR1200 and x86, with the x86 just having much more state
and instructions: we do not know of a unique aspect of x86
at the ISA-level fundamentally different from the OR1200.

6.2 Limitations

SPECS is not able to detect all possible processor bugs, nor
can it guarantee that all inconsistent state is flushed (Sec-
tion 5.5). By construction, SPECS cannot detect contamina-
tions to general-purpose state. General-purpose state is up-
dated in a myriad of ways; as opposed to the few and simple
ways that security-critical state is updated. To apply SPECS
to general-purpose functionality, the number and complexity

of invariants must greatly increase. Since the assertions are
at the same level of abstraction as the functional description,
the increase in number and complexity of invariants is the
same order of magnitude as the increase in processor func-
tionality that SPECS must protect. While SPECS is capa-
ble, the result amounts to a second implementation of the
ISA. As stated earlier, software is better suited for general-
purpose protection [6].

Another limitation of SPECS is that it cannot defend
against processor bugs that change ISA-level state before
SPECS taps the signal. Section 3.6 showed how to use
micro-architectural state to prevent the the instruction from
being contaminated in this fashion (from bugs 6 and 12).
Another possibility is a manufacturing defect, a single-event
upset, or a wear-out that contaminates the state holding ele-
ment itself or the wires that feed SPECS’s view of [SA-level
state. Two options to address this problem outside of SPECS
are to add error correction logic to state holding memories or
to manufacture security critical components of the processor
at a more resilient process node.

7. Additional related work

This section covers work related to SPECS. Specifically, we
cover processor errata as software-level security vulnerabil-
ities, alternative approaches to patching design-time proces-
sor bugs, and a overview of recovery approaches and how
SPECS supports them.

7.1 Processor imperfections

The idea that processor errata can impact the security of a
system is not new. Theo de Raadt was the first to link Intel
errata to potential security vulnerabilities in the OpenBSD
operating system [11]. Inspired by de Raadt’s ideas, others
implemented software-level attacks that used Intel errata as a
foothold [3, 12, 23]. The difference between previous efforts
in exploiting a single erratum as a foothold for a software-
level attack and our work is that our analysis extends beyond
a single attack; we identify both a set of errata that make
it past functional verification and the different classes of
vulnerabilities created by these errata that software can not
protect itself from.

7.2 Patching processor bugs

Ideally, all design-time processor imperfections should be
addressed. The best way to do this is by proving correctness
using formal verification. Although formal methods have
made great strides in recent years, full formal verification of
modern processors remains out of reach—as is evident from
the number of errata in commercial processors [20, 24]. One
approach to patching processor bugs that escape verification
is to add redundant but diverse computations. DIVA [1], as
mentioned in Section 1, is a processor bug patching mech-
anism that leverages redundant implementations of the in-
struction set combined inside a single processor. In DIVA,
a simplified checker core verifies the computation results of

the full-featured core before the processor commits the re-
sults to the ISA level. Since the checker core must be simple
enough to formally verify, its performance is reduced and
slows execution; in contrast, SPECS provides introspection
points that enable recovery approaches that add overhead
only when the processor violates security invariants.

Another approach to patching arbitrary processor bugs is
signature-based detection of processor bug activations. Con-
stantinides et al. [7] and Phoenix [37] use low-level hard-
ware state (flip-flops) to form bug signatures and monitor
the run time state of the processor for matches. Such tech-
niques can detect more imperfections than SPECS, but at a
cost: (1) they require two extra flip-flops for every flip-flop
in the design and (2) heavy contention on opcode flip-flops
limits how many bugs the approaches can monitor concur-
rently [17]. These overheads can be significant; Phoenix, for
example incurs up to 200% additional hardware.

Similar to signature-based detectors, but at the opposite
end of the design tradeoff space is the idea of Semantic
Guardians [44]. Semantic Guardians are assertions on low-
level state that fire whenever the processor enters a state
at runtime that was not functionally verified. This does not
suffer from the heavy contention on a shared resource seen
in signature-based approaches, as each unverified state has
its own assertion circuit. The problem with this approach is
that many states are not seen during verification and building
an assertion for each state is not practical.

7.3 Recovery

The most common recovery strategy is to use a checkpoint-
ing and rollback mechanism. While there are a range of
low overhead checkpointing options available [10, 13, 41],
our analysis of recent errata shows that re-executing is not
enough to move software state past the malicious circuit.
Even in the case of a homogeneous multiprocessor, re-
executing the bug-inducing instruction sequence may acti-
vate the bug. This means that a form of processor repair or
recoding of software is required to handle arbitrary security
invariant violations.

Changing software to recover from incomplete hardware
is not a new idea; before the ubiquity of hardware float-
ing point (FP) units, processors lacking FP hardware sup-
ported ISA-mandated FP instructions by triggering an ex-
ception and using FP emulation firmware to produce a cor-
rect result [25]. Narayanasamy et al. [33] extend this idea
to processor bug patching by using simple, ad hoc, in-
struction rewriting routines that run on the macro expander
DISE [9] in an attempt to avoid activating the bug, and sug-
gest specific software-based recovery strategies for five er-
rata. BlueChip [18], a further elaboration of this scheme,
is a recovery mechanism targeted at malicious circuits im-
plemented as a Linux device driver. SPECS provides a low
overhead way of invoking the BlueChip recovery routines
when they are needed.

8. Conclusion

SPECS is a new approach to patching processor bugs.
SPECS adds a small amount of hardware to a processor that
dynamically verifies security invariants. SPECS works in
the background, not affecting software in the common case
of a bug-free execution. Should software activate a processor
bug that causes a violation of a security invariant, SPECS
creates an introspection point for existing repair and recov-
ery schemes. Experiments with a SPECS implementation
show its practicality and effectiveness at detecting a range of
errata-inspired processor bugs.

Our results validate the hybrid approach of SPECS. Pre-
vious research shows that software can practically address
a wide range of processor bugs—but not all. Previous re-
search also shows hardware can address the processor bugs
that software cannot, but a system powerful enough to ad-
dress all possible processor bugs is impractical. SPECS rep-
resents a middle ground: where small amounts of hardware
ensure a baseline of processor functionality and software is
free to protect itself, as it sees fit, from the bugs in the rest.

Acknowledgments

The paper was improved with constructive comments from
anonymous reviewers; we appreciate your work, expertise,
and insights. The work also benefited from discussions
with Kevin Fu, Milo M. K. Martin, and David Wagner.
This research was supported in part by Intel through the
ISTC for Secure Computing, by the AFOSR under MURI
Award FA9550-09-1-0539, by MARCO and DARPA via C-
FAR (one of the six SRC STARnet Centers), and by the
National Science Foundation under grants CCF-0810947,
CNS-1331652 and CNS-1040672. Any opinions, findings,
conclusions, and recommendations expressed in this paper
are solely those of the authors.

References

[1] T. M. Austin, “DIVA: a reliable substrate for deep submicron
microarchitecture design,” in International Symposium on
Microarchitecture, 1999.

[2] Beyond Semiconductor, “Beyond BA22 Embedded
Processor,” http://www.beyondsemi.com/25/beyond-ba22-
embedded-processor.

[3] E. Biham, Y. Carmeli, and A. Shamir, “Bug attacks,” in
Conference on Cryptology: Advances in Cryptology, 2008.

[4] bjornstar. (2011) nacl_cpuid.c uses vendor string in features
check. NativeClient Bug Tracker. Google. [Online].
Available:
https://code.google.com/p/nativeclient/issues/detail 7id=2508

[5] cbiffle@google.com. (2010) Nacl should accept x86 ’int3’
instruction or offer a plausible alternative. NativeClient Bug
Tracker. Google. [Online]. Available:
https://code.google.com/p/nativeclient/issues/detail 7id=645

[6] J. Chang, G. A. Reis, and D. I. August, “Automatic
Instruction-Level Software-Only Recovery,” in International
Conference on Dependable Systems and Networks, 2006.

http://www.beyondsemi.com/25/beyond-ba22-embedded-processor
http://www.beyondsemi.com/25/beyond-ba22-embedded-processor
https://code.google.com/p/nativeclient/issues/detail?id=2508
https://code.google.com/p/nativeclient/issues/detail?id=645

[7] K. Constantinides, O. Mutlu, and T. Austin, “Online Design
Bug Detection: RTL Analysis, Flexible Mechanisms, and
Evaluation,” in International Symposium on
Microarchitecture, 2008.

[8] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco,
“Software-Based Online Detection of Hardware Defects:
Mechanisms, Architectural Support, and Evaluation,” in
International Symposium on Microarchitecture, 2007.

[9] M. L. Corliss, E. C. Lewis, and A. Roth, “DISE: a
programmable macro engine for customizing applications,”
in International Symposium on Computer Architecture, 2003.

[10] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An
Architectural Framework for Software Recovery of
Hardware Faults,” in International Symposium on Computer
Architecture, 2010.

[11] T. de Raadt. (2007) Intel Core 2. openbsd-misc mailing list.
openbsd-misc mailing list. [Online]. Available:
http://marc.info/?1-openbsd-isc&m=118296441702631;

[12] L. Duflot, “CPU Bugs, CPU Backdoors and Consequences
on Security,” in European Symposium on Research in
Computer Security, 2008.

[13] S. Feng, S. Gupta, A. Ansari, S. A. Mahlke, and D. I. August,
“Encore: Low-cost, Fine-grained Transient Fault Recovery,”
in International Symposium on Microarchitecture, 2011.

[14] H. Foster, K. Larsen, and M. Turpin, “Introduction to the new
accellera open verification library,” 2006.

[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, and R. B. Brown, “MiBench: A free,
commercially representative embedded benchmark suite,” in
Workshop on Workload Characterization, 2001.

[16] L. C. Heller and M. S. Farrell, “Millicode in an IBM zSeries
processor,” IBM Journal of Research and Development,
vol. 48, pp. 425434, 2004.

[17] M. Hicks, “Practical systems for overcoming processor
imperfections,” Ph.D. dissertation, University of Illinois
Urbana-Champaign, 2013.

[18] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and
J. M. Smith, “Overcoming an Untrusted Computing Base:
Detecting and Removing Malicious Hardware
Automatically,” in Symposium on Security and Privacy,
2010.

[19] M. Hicks, C. Sturton, S. T. King, and J. M. Smith. Specs
public repository. [Online]. Available:
https://github.com/impedimentToProgress/specs

[20] Intel Corporation, “Intel Core 2 Extreme Processor X6800
and Intel Core 2 Duo Desktop Processor E6000 and E4000
Sequence — Specification Update,” 2008.

[21] Jennic Limited, “JN5148 Wireless Microcontroller Modules.”

[22] Jon Stokes, “Two billion-transistor beasts: POWER7 and
Niagara 3,” http://arstechnica.com/business/2010/02/two-
billion- transistor-beasts-power7-and-niagara-3/.

[23] S. Lemon. (2008) Researcher to Demonstrate Attack Code
for Intel Chips. PCWorld. [Online]. Available:
http://www.pcworld.com/article/148353/security.html

[24] Advanced Micro Devices, “Revision Guide for AMD Athlon
64 and AMD Opteron Processors,” 2005.

[25] ARM, “ARMv4 Instruction Set, Issue C,” 1998.

[26] MIPS Technologies, “MIPS R4000PC/SC errata, processor
rev. 2.2 and 3.0,” 1994.

[27] A. Meixner, M. E. Bauer, and D. Sorin, “Argus: Low-Cost,
Comprehensive Error Detection in Simple Cores,” in
International Symposium on Microarchitecture, 2007.

[28] A. Meixner and D. J. Sorin, “Detouring: Translating Software
to Circumvent Hard Faults in SimpleCores,” in International
Conference on Dependable Systems and Networks, 2008.

[29] mseaborn@chromium.org. (2009) Check for trailing HLT in
x86 is unnecessary. NativeClient Bug Tracker. Google.
[Online]. Available:
https://code.google.com/p/nativeclient/issues/detail 7id=155

[30] mseaborn@chromium.org. (2010) Dynamic loading syscall
insists on a trailing HLT on x86-32. NativeClient Bug
Tracker. Google. [Online]. Available:
https://code.google.com/p/nativeclient/issues/detail 7id=585

[31] mseaborn@chromium.org. (2011) Escape from x86-64 inner
sandbox using BSF instruction. NativeClient Bug Tracker.
Google. [Online]. Available:
https://code.google.com/p/nativeclient/issues/detail 7id=2010

[32] mseaborn@chromium.org. (2012) x86-64: DATA16 prefix on
direct jumps allows sandbox escape on AMD CPUs.
NativeClient Bug Tracker. Google. [Online]. Available:
https://code.google.com/p/nativeclient/issues/detail 7id=2578

[33] S. Narayanasamy, B. Carneal, and B. Calder, “Patching
Processor Design Errors,” in International Conference on
Computer Design, 2006.

[34] OpenCores.org, “OpenRISC OR1200 processor,”
http://opencores.org/or1k/OR1200_OpenRISC_Processor.

[35] G. A. Reis, J. Chang, D. I. August, R. Cohn, and S. S.
Mukherjee, “Configurable Transient Fault Detection via
Dynamic Binary Translation,” in Workshop on Architectural
Reliability, 2006.

[36] R. Rubenstein, “Open Source MCU core steps in to power
third generation chip,” 2014, http://www.newelectronics.co.
uk/electronics-technology/open-source-mcu-core- steps-in-
to-power-third-generation-chip/59110/.

[37] S. R. Sarangi, A. Tiwari, and J. Torrellas, “Phoenix:
Detecting and Recovering from Permanent Processor Design
Bugs with Programmable Hardware,” in International
Symposium on Microarchitecture, 2006.

[38] S. Shebs, “GDB tracepoints, redux,” in GCC Developer’s
Summit, 2009.

[39] A. L. Shimpi. (2008) AMD’s B3 Stepping Phenom
Previewed, TLB Hardware Fix Tested. AnandTech.
AnandTech. [Online]. Available:
http://anadtech.com/show/2477/2

[40] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and
T. Austin, “Ultra Low-Cost Defect Protection for
Microprocessor Pipelines,” in International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2006.

[41] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood,
“SafetyNet: Improving the Availability of Shared Memory
Multiprocessors with Global Checkpoint/Recovery,” in
International Symposium on Computer Architecture, 2002.

[42] Sun, “OpenSPARC T2 Source Code,”
http://www.opensparc.net/opensparc-t2/download.html.

[43] S. G. Tucker, “Microprogram control for System/360,” IBM
Syst. J., vol. 6, pp. 222-241, 1967.

[44] 1. Wagner and V. Bertacco, “Engineering Trust with Semantic
Guardians,” in Conference on Design, Automation and Test in
Europe, 2007.

[45] Xen.org security team. [Xen-announce] Xen Security
Advisory 7 (CVE-2012-0217) - PV. [Online]. Available:
http://lists.xen.org/archives/html/xen-announce/2012-06/
msg00001.html

http://marc.info/?l-openbsd-isc&m=118296441702631;
https://github.com/impedimentToProgress/specs
http://arstechnica.com/business/2010/02/two-billion-transistor-beasts-power7-and-niagara-3/
http://arstechnica.com/business/2010/02/two-billion-transistor-beasts-power7-and-niagara-3/
http://www.pcworld.com/article/148353/security.html
https://code.google.com/p/nativeclient/issues/detail?id=155
https://code.google.com/p/nativeclient/issues/detail?id=585
https://code.google.com/p/nativeclient/issues/detail?id=2010
https://code.google.com/p/nativeclient/issues/detail?id=2578
http://opencores.org/or1k/OR1200_OpenRISC_Processor
http://www.newelectronics.co.uk/electronics-technology/open-source-mcu-core-steps-in-to-power-third-generation-chip/59110/
http://www.newelectronics.co.uk/electronics-technology/open-source-mcu-core-steps-in-to-power-third-generation-chip/59110/
http://www.newelectronics.co.uk/electronics-technology/open-source-mcu-core-steps-in-to-power-third-generation-chip/59110/
http://anadtech.com/show/2477/2
http://www.opensparc.net/opensparc-t2/download.html
http://lists.xen.org/archives/html/xen-announce/2012-06/msg00001.html
http://lists.xen.org/archives/html/xen-announce/2012-06/msg00001.html

	Introduction
	Security-Critical Errata
	SPECS Design
	An example invariant and assertion
	Design principles
	Assumptions
	SPECS components and interactions
	History
	Instruction stability
	Local state taps
	Invariant state update gating

	SPECS Invariants
	Assertions
	Invariant descriptions
	Invariant analysis

	Evaluation
	Detecting the errata-based bugs
	Protection versus time
	False detections
	Evaluating the cost of SPECS
	Recovering from invariant violations

	Discussion
	Implementing SPECS in x86
	Limitations

	Additional related work
	Processor imperfections
	Patching processor bugs
	Recovery

	Conclusion

