
‘Recognizing Safety and Liveness’ by Alpern and Schneider

Calvin Deutschbein

17 Jan 2017

1 Intro

1.1 Safety

What is safety?

“Bad things do not happen”

For example, consider the following “safe” program in C:

int main() {

return 0;

}

It will not cause anything bad to happen.

Safety is here based on invariance arguments, that is, that certain aspects of a system remain unchanged
under any circumstance. The invariant parameter is, of course, the one that ensures nothing bad happens.

1.2 Liveness

What is liveness?

“Good things do happen”

Or at least will happen eventually. There is not a timing constraint in this model.

For example, consider the following “live event”: Nuclear Winter.

Sure bad things happen, but it has been an inspiration for much art so something good about it has
happened.

Liveness is usually related to well-foundedness.

In logic, well-foundedness means that for a binary relationship on a set, each subset has a minimal
element.

Take that minimal element as being the “something good” and it’s fairly easy to imagine that if events
always push a system in a certain direction, and it is known that after a certain amount of pushing
“something good” would be arrived at, satisfying liveness.

2 Definitions

2.1 Program Model

Programs are modeled by a start state and a series of actions from that start state.

1

Programs are denoted as “π”

Executions are denoted as “σ”

An execution σ can be expressed as a sequence of program states s0s1...,.

In general, this sequence is infinite because programs may be infinite. If it is finite, simply repeat the
last state infinitely many times.

2.2 Properties

By definition, in this paper properties are sets of infinite sequences of program states.

What does that mean?

Recall that σ denotes an infinite sequence of program states. This is also called an execution of a
program.

A specific execution, say σ1 (of program π1 for example), might be a member of set P which means that
it has property P . This is expressed with double turnstile “�” as in: “σ1 � P”

Program π1 “satisfies” P if all of its possible executions are in P , that is

∀i, σi � P

In this paper (as its contribution), properties are expressed as Buchi automata.

2.3 Buchi Automata

History fact: It is named after the Swiss mathematician Julius Richard Bchi who invented this kind of
automaton in 1962.

They can, like many automata, be deterministic or non-deterministic. Unlike many automata, non-
deterministic Buchi automata can recognize some infinite sequences that deterministic Buchi automata
cannot.

Keep in mind that these are designed to accept infinite strings. So in the case of finite length programs
we have to massage them a bit.

Now:

A Buchi Automaton m for a program property P is a five-tuple m = (S,Q,Q0, Q∞, δ):

S is the set of program states of π

Recall program states are denoted si and that an infinite sequence of such states forms an execution σ

Q is the set of automaton states of m.

These are graphically represented with circles.

Q0 ⊂ Q is the set of start states of m.

In a deterministic automaton, there would be only once such state. These states are graphically repre-
sented with incoming arcs from outside the automaton.

THERE ARE TWO KINDS OF STATES.

Q∞ ⊂ Q is the set of accepting states of m.

These are graphically represented by double (concentric) circles. In the case of a finite program sequence
being accepted, for example, there would be an accepting state with arc containing only the final state
sn being leaving and arriving at the accepting state.

δ ∈ (Q× S)→ 2Q is the “transition function” of m.

2

The transition function gives what automaton state in Q to transition to given your current automaton
state and the new program state. In non-deterministic automata, this may be a set of states or, in
deterministic, a single state.

2.4 Transition Predicates

From δ, a transition predicate Tij can be derived that encodes whether a transition is legal given a state
of both program and automaton.

Tij is False if ∀s : δ(qi, s) = False

2.5 Finite Transition Functions

First some notation.

Recall that an execution σ gives an infinite sequence of program states si.

σ[i] = si

σ[...i] = s0, ..., si

σ[i...] = si, s(i+ 1), ...

|σ| = the length of σ or ω is σ is infinite.

Then consider finite transition function δ∗. δ∗ is identical to δ except that once the sequence is of length
|σ| there are no more changes in program state (that is, the states denoted si) after a certain point.

2.6 Acceptance

A run of m is the sequence of states m passes through, that is, the states denoted qi while reading σ
(or, in the non-deterministic case, any such sequence).

The set of runs is given as Γ(σ) and is singular in deterministic case.

INFm(σ) is the set of automaton states (that is, the states denoted qi) that appear infinitely often in
any m ∈ Γ(σ)

σ is accepted by m if and only if:

∃qi : qi ∈ INFm(σ) ∧ qi ∈ Q∞
Recall that Q∞ is the set of accepting states of m.

At a high level, this means an execution is accepted by m if an accepting automaton state occurs infinitely
many times in its run.

2.7 Examples of Properties

Partial Correctness, Mutual Exclusion, and Starvation Freedom are all trivially represented by Buchi
Automata.

The mutex example shows how to encode a system only defined by not violating an invariant.

There’s little else of interest in the examples.

3

2.8 Final Words

The idea of Buchi automata in safety and liveness is to make sure that any failure of safety results in
an undefined transition that causes the program not to be accepted and that liveness must occur before
reaching an accepting state.

3 Recognizing Safety & Liveness

I would encourage you not to over-think safety. It means bad things don’t happen. The authors go so
far as to say that bad things are okay if they’re fixable. Sure. Just don’t over-think it.

3.1 Defining Safety

In plain English, this says that an execution of program (recall that this is denoted σ = s1, s2, ...) is safe
if execution at every point, that is, for every i, can be appended with an infinite sequence (called β) that
creates an infinite sequence that satisfies safety property P .

Before the formal definition, note that S denotes the set of program states, Sω denotes infinite sequences
of such states, and S∗ finite sequences.

Here’s the formal definition:

∀σ ∈ Sω, σ � P ⇔ ∀i ≥ 0∃β ∈ Sω : σ[...i]β � P

3.2 Safety in Buchi Automata

Since safety is about bad things not happening, any transition on a Buchi automaton doesn’t violate
safety (otherwise, such a transition would not be present). Consequently, in the case of safety, all
automata states are accepting. This is called the “closure” cl(m) of a Buchi automaton.

Therefore, a Buchi automata recognizes a safety property if m = cl(m), that is, that all states of m are
accepting states.

Of note, it’s important to reduce the automaton first.

This stream of thought is codified in Theorem 1, however, as a simple application of a definition, I didn’t
feel a need to delve into that too deeply.

3.3 Defining Liveness

In plain English, the liveness definition states that no matter what sequence of states a program has
passed through, a sequence exists that will carry it to satisfy a liveness property by reaching an accepting
state.

Here’s the formal definition:

∀α ∈ S∗∃β ∈ Sω : αβ � P

This is a lot more straightforward than safety because it is not concerned with what happens at all times,
only at one.

4

3.4 Liveness in Buchi Automata

Liveness also has a relationship to the closure operation on automata. Recall that safety properties are
those that are defined by automata that are their own closures.

As liveness is unconcerned with any occurrences other than the final state, it’s closure, that is, cl(m),
must accept every input.

I found the theorem here, Theorem 2, similarly redundant as an application of definition.

4 Partitioning into Safety & Liveness

This is the fun part.

Consider Buchi automaton m. The property specified by m, and do recall that in this paper properties
are sets of infinite sequences of program states, can be specified as being the intersection of the properties
of a safety-only oriented automaton Safe(m) and a liveness-only oriented automaton Live(m).

It makes sense to talk about intersections of properties, because properties are just sets.

This is interesting for a variety of reasons, namely that everything expressed by a Buchi automata can
be considered a combination of safety or liveness given these definitions of safety and liveness.

We start by looking at Safe(m).

4.1 Safe(m)

Take Safe(m) to be cl(m). Obviously that expresses a safety property. This is established rigorously by
Theorems 1 and 3.

4.2 Live(m)

The trick for Live(m) is to recognize what is considered a safety property.

For the record, at this point I’ve begun to grow a bit skeptical of having a liveness classification that is
defined simply as being in opposition to a safety property, but I’ll leave that one to the philosophers.

Anyway here’s the definition given:

(Live(m)) = L(m) ∪ (Sω − L(cl(m)))

This is conspicuously similar to just saying “and liveness is everything else!” but, of course, there’s
nothing wrong with that.

Anyway, in plain English, it says liveness is everything else. But how to build Live(m)?

4.3 Building Live(m)

For the deterministic case, it is as simple as taking m but sending all previously unaccepted transitions
to a new “trap” state that then loops into itself on any input and is accepting. Easy.

For the non-deterministic case, it gets a bit more exciting. The paper gets a bit bogged down here, but
the main takeaway is that it is m augmented with a trap state. Don’t overthink this either.

A lemma formalizes all of this.

5

4.4 Verifying Live(m)

There’s two parts of this. In the paper, these are Theorems 4 and 5.

1. Convince ourselves that Live(m) is a liveness property.

This is easy. Live(m) has no undefined transitions, so its closure clearly accepts everything. This requires
a bit more book-keeping in non-deterministic case, but the central thrust is the same.

2. Convince ourselves that Live(m), with Safe(m), is m.

Let’s rehash the formal specification here because this theorem is so important.

L(m) = L(Safe(m)) ∩ L(Live(m))

Recall that L(Live(m)) was basically defined to be everything in L(m) except things in L(Safe(m)):

(Live(m)) = L(m) ∪ (S∞ − L(cl(m)))

Then just follow through the logic. It’s especially clear when drawing a picture.

The paper then has an extended example that shows partial correctness as Safe(m) and termination as
Live(m) form total correctness.

5 Proving Properties

The goal is to get to program verification. So how do we do that? Reverse engineer proof obligations
from Buchi automata (deterministic only now).

Consider automaton m for property P . Consider a program π, and recall that the execution of such a
program would be represented as an execution σ of infinite program states si.

To show π satisfies m, correspondence invariants denoted as Ci are used. Recall Q is the set of automaton
states in m.

∀qi ∈ Q,∃Ci
Ci ⇔ si ∈ σ(π) ∧ qi ∈ δ(qprev, si−1)

This means that, if m enters qi upon reading s, s satisfies Ci.

Ci’s are defined inductively.

5.1 Building Ci’s

Base case:

Consider the first transitions of the program and the automaton.

The program π begins in state so which satisfies Initπ.

The automaton m begins in state q0 and transitions to qj .

Now, since m transitions to qj upon reading s0, s0 must satisfy the transition predicate (remember
those?) T0j . This predicate captures the presence of this transition in the transition function of m,
denoted δ.

This builds up to the base case:

Correspondence Basis: ∀qj ∈ Q : (Initπ ∧ T0j ⇒ Cj)

Inductive case:

Let m enter qi upon reading sk with k < K so sk satisfies Ci.

6

Now consider m is in qi and upon reading sK enters qj .

By inductive hypothesis, we have sK−1 satisfies Ci and sK satisfies Tij .

Now, for Cj to hold, we need only that there exists an atomic action, which are the actions that transition
si to si+1 in σ denoted α, such that {Ci}α{Tij ⇒ Cj}.

What does this means?

Well, α goes from sK−1 to sK . Ci is necessarily true for sK−1 by hypothesis. Tij is true if this transition
would be accepted by m. So then Cj must be true...

Correspondence Induction: ∀αi,∀qi ∈ Q, {Ci}α{∧qj∈QTij ⇒ Cj}.

This says the same thing, only for all transitions instead of a specific one.

5.2 Does m satisfy P?

To satisfy P , every σ of π must be accepted by m. This can fail if...

1) m attempts an undefined transition

2) m never reaches an accepting state.

These can be shown to be impossible.

5.3 Transitions

Is there a valid first transition of m?

Transition Basis: Initπ ⇒ ∨qj∈QT0j
The inductive step is similar to correspondence.

Transition Induction: ∀αi,∀qi ∈ Q, {Ci}α{∨qj∈QTij ⇒ Cj}.

5.4 Acceptance

A “Reject Knot” denoted κ is a strongly connected subset of Q that contains no accepting states.

All σ’s are accepted if none of them are restricted to non-accepting states, that is, trapped in a reject
knot.

To show this, a “variant function” is created, denoted vκ. It maps automaton and program states to a
well-founded set.

Remember well-foundedness? It means all subsets have minimal elements, like the natural numbers.

To prevent being trapped in a reject knot, require that:

vκ(q, s) = 0⇒ q /∈ κ

This is captured by correspondence invariants as follows:

Knot Exit: ∀qi ∈ κ : vκ(qi) = 0⇒ ¬Ci
Then, ensuring an exit is as simple as ensuring each action of the program while in κ decreases vκ:

Knot Variance: ∀α,∀qi ∈ κ, {Ci ∧ 0 < vκ(qi) = x}α{∧qj∈κ(Tij ∧ Cj)⇒ vκ(qj) < x}

7

6 All Together

Basis and Induction across Correspondence and Transition, and Knot Exit and Variance take on three
forms:

CB, TB, KE are predicate logic.

CI and TI prove invariance of assertions.

KV requires well-foundedness.

6.1 Back to Safety and Liveness

Safe(m) cannot have reject knots because it only has accept states. Easy!

Then there’s only invariance arguments, and if m = Safe(m) then safety only requires invariance
arguments.

Live(m) cannot have illegal transitions by definition, so it satisfies transitions trivially.

This amounts to a well-foundedness argument on knots!

8

	Intro
	Safety
	Liveness

	Definitions
	Program Model
	Properties
	Buchi Automata
	Transition Predicates
	Finite Transition Functions
	Acceptance
	Examples of Properties
	Final Words

	Recognizing Safety & Liveness
	Defining Safety
	Safety in Buchi Automata
	Defining Liveness
	Liveness in Buchi Automata

	Partitioning into Safety & Liveness
	Safe(m)
	Live(m)
	Building Live(m)
	Verifying Live(m)

	Proving Properties
	Building Ci's
	Does m satisfy P?
	Transitions
	Acceptance

	All Together
	Back to Safety and Liveness

