Logic of PriCL requires...

truth/falseness (denoted respectively as \top and \bot), conjunction (denoted \land), entailment (denoted $A \models B$ if formula A entails formula B), and monotonicity regarding entailment, i.e., if $A \models B$ then $A \land C \models B$ for any formula C. As

Definition 1 (Case). A case C is a tuple $(df, CaseDesc, ProofTree, crt)$ s.t.
- df is a formula that we call the decision formula of C.
- $CaseDesc$ is a formula describing the case's circumstances.
- $ProofTree$ is a (finite) tree consisting of formulas f where the formula of the root node is df. Inner nodes are annotated with AND or OR and leaves are annotated with $l \in \{Axiom, Assess\} \cup \{Ref(i) \mid i \in C_I\}$. Leaf formulas l are additionally associated with a prerequisite formula pre. For leaves annotated with $Axiom$, we require that $pre = l$.
- $crt \in Courts$.

“pre \rightarrow fact” is a description of human judgment, not logical implication

“pres_c” and “facts_c” give all prerequisites/facts in a tree given $CaseDesc \models pre$. Type: tree \rightarrow set(p/f)

Subcases are subtrees with around a node n with $df_sub \leftarrow n$

Definition 2 (Subcase). Let $C = (df, CaseDesc, ProofTree, crt)$ be a case and $n \in ProofTree$ a node. Let $sub(n)$ be the subtree of $ProofTree$ with root node n. The case $sub(C, n) := (n, CaseDesc, sub(n), crt)$ is a subcase of C.

df is always necessarily of form $is_legal_action(a)$ because of the nature of privacy law

Definition 3 (Privacy Case). Given world knowledge KB_W and action set $Actions$, a case $C = (df, CaseDesc, ProofTree, crt)$ is a privacy case if $df \in \{\neg is_legal_action(a), is_legal_action(a)\}$ for some action $a \in Actions$, where the is_legal_action predicate is not used in either of KB_W or $CaseDesc$.

Definition 4 (Case Consistency). Let $C = (df, CaseDesc, ProofTree, crt)$ be a case. C is consistent if the following holds (for all nodes n where n_1, \ldots, n_k are its child nodes)

(i) $KB_W \land CaseDesc \not\models \bot$

(ii) $KB_W \land CaseDesc \models pres_C$

(iii) $KB_W \land CaseDesc \land facts_C \not\models \bot$

(iv) $\bigwedge_{1 \leq i \leq k} n_i \models n$ if n is an AND step and $\bigvee_{1 \leq i \leq k} n_i \models n$ if n is an OR step
Explain intuition behind OR

Definition 5 (Case Law Database (CLD)). A case law database is a tuple \(DB = (C, \leq_t, \text{must-agree}, \text{may-ref}, \mu, U) \) such that:

- \(C \) is a set of cases. We will also write \(C \in DB \) for \(C \in C \).
- \(\mu : C \to C_t \) is an injective function such that \(C \) is closed under \(\mu \). In the following we will also write \(\text{Ref}(D) \) for \(\text{Ref}(i) \) if \(\mu(D) = i \).
- Let \(\prec_{\text{ref}} := \{(C, D) \mid D \text{ contains a } \text{Ref}(C) \text{ node}\} \) and \(\leq_t \) is an order that we call time order of the cases. It has to hold:

\[
\text{must-agree} \subseteq \prec_{\text{ref}} \subseteq \text{may-ref} \subseteq \leq_t \subseteq C \times C
\]

- \(U \) specifies the unwarranted nodes, i.e., \(U : C \to N \) is function such that
 - \(N \) is a subset of the nodes labelled with \(\text{Assess} \) or \(\text{Ref} \) in the cases \(C \).
 - The set increases monotonic, i.e., \(C \leq_t D \implies U(C) \subseteq U(D) \).

We denote the unwarranted nodes of \(DB \) by \(U(DB) := \bigcup_{C \in C} U(C) \).

Explain must-agree vs may-ref / ratio decidendi vs obiter dicta

To be warranted, a case must not require prerequisites

Definition 6 (Warranted Subcase). A subcase \((df, \text{CaseDesc}, \text{ProofTree}, \text{crt}) \) is warranted with respect to a set \(N \) of nodes if the case \((df, \text{CaseDesc}, \text{ProofTree}', \text{crt}) \) is consistent where \(\text{ProofTree}' \) is derived from \(\text{ProofTree} \) by replacing every precondition of a node \(n \in N \) by \(\bot \).

A reference is correct if there are shared decision requirements on a node and shared prerequisites

Definition 7 (Correct Case Reference). Let \(DB \) be a case law database and \(C = (df, \text{CaseDesc}, \text{ProofTree}, \text{crt}) \) a case in \(DB \). A leaf node \(pre \to \text{fact} \) in \(\text{ProofTree} \) annotated with \(\text{Ref}(D) \) references correctly if \(D_u = (\text{fact}, \text{CaseDesc}_D, \text{ProofTree}_D, \text{crt}_D) \) is a warranted subcase of a case \(D \in DB \) w.r.t. \(U(C) \), \(\text{may-ref}(C, D) \) holds and \(K_B W \wedge pre \models \text{pres}_D \). \(C \) references correctly if all its leaves annotated with \(\text{Ref}(D) \) reference correctly.

Cases conflict if their facts or prerequisites contradict and they must agree (because of their df's)
Definition 8 (Case Conflict). Let C_1 be a case in DB and C_2 be a warranted case w.r.t. $U(C_1)$. We say that C_1 is in conflict with C_2 if and only if

(i) $KB_W \land \text{pres}_{C_1} \land \text{pres}_{C_2} \not\models \bot$

(ii) $KB_W \land \text{facts}_{C_1} \land \text{facts}_{C_2} \models \bot$

(iii) $\text{must-agree}(C_1, C_2)$

A case C is in conflict with DB if there is a $D \in DB$ s.t. C is in conflict with D.

Probably just gloss over this as it closely matches intuition and is way too long:

Definition 9 (Case law database consistency). A case law database $DB = (C, \leq_t, \text{must-agree}, \text{may-ref}, \mu, U)$ is

(i) case-wise consistent if every $C \in DB$ is consistent,

(ii) referentially consistent if every $C \in DB$ references correctly, and

(iii) hierarchically consistent if every $C \in DB$ is not in conflict with DB.

(iv) warrants consistently if for every C holds: $U(C')$ contains all $\text{Ref}(D)$ nodes where D is an unwarranted subcase w.r.t. $U(C)$.

We call DB consistent if it warrants consistently and is hierarchically, referentially and case-wise consistent.

Deduce = must follow from existing law; Permit = could follow or opposite could follow

Definition 10 (Deducibility and Permissibility). Let $DB = (C, \leq_t, \text{must-agree}, \text{may-ref}, \mu, U)$ be a consistent CLD, and f a formula. We say that f is permitted in DB under circumstances CaseDesc and court crt if there exists a case $C = (f, \text{CaseDesc}, \text{ProofTree}, \text{crt})$ such that ProofTree does not contain nodes labeled with Assess, and $DB \cup \{C\}$ is consistent (where C is inserted at the end of the timeline \leq_t). We say that f is uncontradicted in DB under CaseDesc and crt if $\neg f$ is not permitted under CaseDesc and crt. We say that f is deducible if it is permitted and uncontradicted.

For sets F of formulas, we say that F is permitted in DB under CaseDesc and crt if there exists a set of cases $\{C_f = (f, \text{CaseDesc}, \text{ProofTree}_f, \text{crt}) \mid f \in F\}$ such that every ProofTree$_f$ does not contain nodes labeled with Assess, and $DB \cup \{C_f \mid f \in F\}$ is consistent (where the C_f are inserted in any order at the end of the timeline \leq_t).

This doesn't actually seem that important but does a neat trick in (ii)

Theorem 1. There is a consistent case law database DB, case description CaseDesc and court crt, such that there is a set F of formulas for each of the following properties (in DB under circumstances CaseDesc and court crt):

(i) For every $f \in F$, f is permissible and F is not permissible.

(ii) F is permissible, but $\bigwedge_{f \in F} f$ is not permissible.
A supporting set is the facts/pres from which permissibility arises.

Definition 11 (Supporting set). Let $DB = (C, \leq_t, must-agree, may-ref, \mu, U)$ be a consistent case law database, f a formula, CaseDesc a case description and crt a court. A set A of leaf nodes in DB that are labeled with Assess is a supporting set for formula f if the following holds:

1. $KB_W \land CaseDesc \models \bigwedge_{(pre\rightarrow fact) \in A} pre$
2. $KB_W \land CaseDesc \land \bigwedge_{(pre\rightarrow fact) \in A} fact \models f$
3. $KB_W \land CaseDesc \land \bigwedge_{(pre\rightarrow fact) \in A} fact \not\models \bot$

This trivial follows from definitions but “suggests an algorithm” if you love exponential time

Theorem 2. Let DB be a consistent case law database, f a formula, CaseDesc a case description and crt a court. The following holds:

1. $C \in DB$ with warranted node $f \Rightarrow \exists A$ that supports f
2. f is permitted (under circumstance CaseDesc and court crt) $\Leftrightarrow \exists A$ that supports f, is warranted, and is consistent with DB
3. f is deducible $\Leftrightarrow \exists A$ that supports f and is consistent with DB, and $\forall B$ it holds that B does not support $\neg f$, is unwarranted, or is not consistent with DB

This really just clarifies the reasons for the specificity of Thm 2… moving on.

Theorem 3. Let DB be a case law database, and let f be any formula that does not entail \bot. Then there exist cases C_1 and C_2, each with root node f and the empty case desc \top, such that (inserting C_i at the end of the timeline \leq_t):

- If DB is case-wise consistent, then so is $DB \cup \{C_1\}$.
- If DB is referentially consistent, then so is $DB \cup \{C_2\}$.
- If there is a crt such that $must-agree(crt) = \emptyset$, then in addition this holds:
 for each of $i = 1, 2$, if DB is hierarchically consistent, then so is $DB \cup \{C_i\}$.

I think this last one is pretty obvious.

Theorem 4. The formula \bot is not permitted in any case law database DB, under any circumstances CaseDesc and court crt. The same holds for $\{f, \neg f\}$ if crt $\in must-agree(crt)$.

Norms = implicit laws

Definition 12 (Norms). Let $a \in Actions$. A norm is a formula that has the form $\phi \Rightarrow p$ where $is_legal_action(a)$ does not occur in ϕ. The norm is a positive norm, denoted ϕ^+, if $p = is_legal_action(a)$ and a negative norm, denoted ϕ^-, if $p = \neg is_legal_action(a)$. A norm ϕ decides p given f if $KB_W \land f \models \phi$.

Norms can be found...
Theorem 5. Let DB be a consistent privacy case law database and $C = (df, CaseDesc, ProofTree, crt) \in DB$. Then there is a norm ϕ that decides df given CaseDesc. In particular, there are formulas ϕ_W, ϕ_S such that $is_legal_action(a)$ does not occur in these formulas and

1. $\text{facts}_C \Rightarrow \phi_W \land (\phi_S \Rightarrow df)$
2. $\phi_W \land (\phi_S \Rightarrow df) \Rightarrow df$

And cases restructured around them...

Corollary 1 (Normal forms). Let $DB = (C, \leq_t, \text{must-agree}, \text{may-ref}, \mu, U)$ be a privacy case law database, $C = (df, CaseDesc, ProofTree, crt) \in DB$ be a case, and D be the set of C’s leaf nodes. $N(C)$ is the case that consists of a root node df, two inner nodes ϕ_w and $\phi_S \Rightarrow df$ and the leaf nodes D as children of both inner nodes. We call $N(C)$ the normal form of C. If DB is consistent, then $(C\setminus\{C\} \cup \{N(C)\}, \leq_t)$ is also consistent (where $N(C)$ is placed at the position of C w.r.t. \leq_t).

This is determined by a brute force “Algorithm 1: Permissibility” - nevertheless an algorithm though

sump_2 means “NP with NP oracle”

Theorem 6. For propositional logic, deciding permissibility is Σ^p_2-complete.

Theorem 7. Permissibility is equivalent to satisfiability of a formula whose size is polynomial in the size of DB, $CaseDesc$, and f for

1. first-order logic.
2. the description logic ALC with concept constructors $fills$ and one_of by role constructors $role_and$, $role_not$, $product$, and $inverse$.

The logic to use is “attributive concept language with complements” because of nice properties...