PriCL notes by Calvin
A Brief Introduction to Law: Common Law v Civil Law, Precedence
Logic of PriCL requires...

truth /falseness (denoted respectively as T and L), conjunction (denoted A), en-
tailment (denoted A = B if formula A entails formula B), and monotonicity
regarding entailment, i.e., if A = B then A A C = B for any formula C. As

Definition 1 (Case). A case C is a tuple (df, CaseDesc, ProofTree, crt) s.t.

— df is a formula that we call the decision formula of C.

— CaseDesc is a formula describing the case’s circumstances.

— ProofTree is a (finite) tree consisting of formulas f where the formula of the
root node is df. Inner nodes are annotated with AND or OR and leaves are
annotated with | € {Axiom, Assess} U {Ref(z) | i € C;}. Leaf formulas | are
additionally associated with a prerequisite formula pre. For leaves annotated
with Axiom, we require that pre = [.

— crt € Courts.

“pre — fact” is a description of human judgment, not logical implication
“pres_c” and “facts_c” give all prerequisites/facts in a tree given CaseDesc |= pre. Type: tree — set(p/f)

Subcases are subtrees with around a node n with df_sub < n

Definition 2 (Subcase). Let C' = (df, CaseDesc, ProofTree, crt) be a case and
n € ProofTree a node. Let sub(n) be the subtree of ProofTree with root node n.
The case sub(C,n) := (n, CaseDesc, sub(n), crt) is a subcase of C'.

df is always necessarily of form is_legal_action(a) because of the nature of privacy law

Definition 3 (Privacy Case). Given world knowledge KBy, and action set
Actions, a case C = (df, CaseDesc, ProofTree, crt) is a privacy case if df €
{—is_legal_action(a), is_legal_action(a)} for some action a € Actions, where the
is_legal_action predicate is not used in either of KBy or CaseDesc.

Definition 4 (Case Consistency). Let C' = (df, CaseDesc, ProofTree, crt) be

a case. C' is consistent if the following holds (for all nodes n where nq, ..., ny
are its child nodes)
(i) KBw A CaseDesc = | (i1) KBw N CaseDesc |= presq

(ii1) KBy A CaseDesc /\ factsq = L

(iv) {/\{k n; =n if n is an AND step  and Vlgigk n; = n if n is an OR step
1<i<



Explain intuition behind OR

Definition 5 (Case Law Database (CLD)). A case law database is a tuple
DB = (C, <;, must-agree, may-ref, i, U) such that:
— C is a set of cases. We will also write C' € DB for C' € C.
— pu: C — Cy 1s an injective function such that C is closed under p. In the
following we will also write Ref(D) for Ref(i) if u(D) = i.
— Let <, := {(C,D) | D contains a Ref(C) node} and <; is an order that we
call time order of the cases. It has to hold:
must—ag;e:é may-ref C<,C C x C
— U specifies the unwarranted nodes, i.e., U : C — N is function such that
e N is a subset of the nodes labelled with Assess or Ref in the cases C.
e The set increases monotonic, i.e., C <, D = U(C) CU(D).
We denote the unwarranted nodes of DB by U(DB) :=Jpsec U(C).

tuitively, may-ref(C, C3) denotes the circumstances that case C'; may reference
case Cy; must-agree(C, Cy) analogously denotes that C; must agree with .

Explain must-agree vs may-ref / ratio decidendi vs obiter dicta

To be warranted, a case must not require prerequisites

Definition 6 (Warranted Subcase). A subcase (df, CaseDesc, ProofTree, crt)
is  warranted with respect to a set N of nodes if the case
(df, CaseDesc, ProofTree', crt) is consistent where ProofTre€ is derived from
ProofTree by replacing every precondition of a node n € N by L.

A reference is correct if there are shared decision requirements on a node and shared prerequisites
Definition 7 (Correct Case Reference). Let DB be a case law database and

C = (df, CaseDesc, ProofTree, crt) a case in DB. A leaf node pre — fact in
ProofTree annoted with Ref(D) references correctly iof D, = (fact, CaseDescp,
ProofTreep, crtp) is a warranted subcase of a case D € DB w.r.t. U(C),
may-refl(C, D) holds and KBw A pre |= presp. C' references correctly if all its
leaves annoted with ReflD) reference correctly.

Cases conflict if their facts or prerequisites contradict and they must agree (because of their df's)



Definition 8 (Case Conflict). Let C| be a case in DB and Cy be a warranted
case w.r.t. U(Cy). We say that C; is in conflict with Cy if and only if
(1) KBw A presq, A presg, [= L (it) KBy A factsc, A factsq, = L
(#it) must-agree(C, C2)
A case C' is in conflict with DB if there is a D € DB s.t. C s in conflict with D.

Probably just gloss over this as it closely matches intuition and is way too long:
Definition 9 (Case law database consistency). A case law database DB =
(C, <, must-agree, may-ref, i, U) is
(i) case-wise consistent if every C' € DB is consistent,
(i1) referentially consistent if every C € DB references correctly, and
(i21) hierarchically consistent if every C' € DB is not in conflict with DB.

(iv) warrants consistently if for every C holds: U(C') contains all Ref(D) nodes
where D is an unwarranted subcase w.r.t. U(C).

We call DB consistent if it warrants consistently and is hierarchically, referen-

tially and case-wise consistent.

Deduce = must follow from existing law; Permit = could follow or opposite could follow
Definition 10 (Deducibility and Permissibility). Let DB = (C,<;
, must-agree, may-ref, i, U) be a consistent CLD, and f a formula. We say that f
is permitted in DB under circumstances CaseDesc and court crt if there exists a
case C' = (f, CaseDesc, ProofTree, crt) such that ProofTree does not contain nodes
labeled with Assess, and DB U {C'} is consistent (where C' is inserted at the end
of the timeline <;). We say that f is uncontradicted in DB under CaseDesc and
crt if = f is not permitted under CaseDesc and crt. We say that f is deducible if
it 15 permatted and uncontradicted.

For sets F' of formulas, we say that F' is permitted in DB under CaseDesc
and crt if there exists a set of cases {C¢ = (f, CaseDesc, ProofTrees, crt) | f €
F'} such that every ProofTree; does not contain nodes labeled with Assess, and
DBU{Cy | f € F} is consistent (where the Cy are inserted in any order at the
end of the timeline <, ).

This doesn't actually seem that important but does a neat trick in (ii)

Theorem 1. There is a consistent case law database DB, case description
CaseDesc and court crt, such that there is a set F' of formulas for each of the
following properties (in DB under circumstances CaseDesc and court crt):

(i) For every f € F, f is permissible and F is not permissible.

(1) F is permissible, but )\ ;. f is not permissible.



A supporting set is the facts/pres from which permissibility arises.

Definition 11 (Supporting set). Let DB = (C, <;, must-agree, may-ref, ji, U)
be a consistent case law database, f a formula, CaseDesc a case description
and crt a court. A set A of leaf nodes in DB that are labeled with Assess is a
supporting set for formula f if the following holds:

(1) KBw A CaseDesc = N\ e s fact)ca PPe

(2) KBw A CaseDesc A\ e s factjca fact = f

(3) KBw A CaseDesc A N\ ey pactyen fact = L

This trivial follows from definitions but “suggests an algorithm” if you love exponential time
Theorem 2. Let DB be a consistent case law database, f a formula, CaseDesc
a case description and crt a court. The following holds:
1. C € DB with warranted node f = 3A that supports f
2. f is permitted (under circumstance CaseDesc and court crt) < A that
supports f, is warranted, and is consistent with DB
3. [ is deducible < A that supports f and is consistent with DB, and VB it

holds that B does not support —f, is unwarranted, or is not consistent with
DB

This really just clarifies the reasons for the specificity of Thm 2... moving on.
Theorem 3. Let DB be a case law database, and let f be any formula that does
not entatl L. Then there exist cases C1 and Cs, each with root node f and the
emply case desc T, such that (inserting C; at the end of the timeline <;):

— If DB is case-wise consistent, then so is DBU {C}.

— If DB is referentially consistent, then so is DBU {C5}.

— If there is a crt such that must-agree(crt) = 0, then in addition this holds:

for each of i = 1,2, if DB is hierarchically consistent, then so is DBU{C;}.

I think this last one is pretty obvious.

Theorem 4. The formula L is not permitted in any case law database DB,

under any circumstances CaseDesc and court crt. The same holds for {f,—f} if
crt € must-agree(crt).

Norms = implicit laws

Definition 12 (Norms). Let a € Actions. A norm is a formula that has the
form ¢ = p where is_legal_action(a) does not occur in ¢. The norm is a positive
norm, denoted ¢, if p = is_legal_action(a) and a negative norm, denoted ¢—, if
p = —is_legal_action(a). A norm ¢ decides p given f if KBy A f = ¢.

Norms can be found...



Theorem 5. Let DB be a consistent privacy case law database and
C' = (df, CaseDesc, ProofTree,crt) € DB. Then there is a mnorm
¢ that decides df given CaseDesc. In particular, there are formulas
ow, s such that is_legal_action(a) does not occur in these formulas and
(1) faCTSCZP-d)w’/\((ﬁS :>df) (2) (}5w/\(¢55 :>df) = df

And cases restructured around them...

Corollary 1 (Normal forms). Let DB = (C, <;, must-agree, may-ref, 1, U) be
a privacy case law database, C' = (df, CaseDesc, ProofTree, crt) € DB be a case,
and D be the set of C'’s leaf nodes. N(C) is the case that consists of a root
node df, two inner nodes ¢,, and ¢g = df and the leaf nodes D as children of
both inner nodes. We call N(C') the normal form of C. If DB is consistent, then
(C\{C} U{N(C)},<y) is also consistent (where N(C') is placed at the position
of C w.r.t. <y).

This is determined by a brute force “Algorithm 1: Permissibility” - nevertheless an algorithm though

sum/p_2 means “NP with NP oracle”
Theorem 6. For propositional logic, deciding permissibility is X% -complete.

Theorem 7. Permissibility is equivalent to satisfiability of a formula whose size

s polynomaal in the size of DB, CaseDesc, and f for

(1) first-order logic.

(2) the description logic ALC with concept constructors fills and one-of by role
constructors role-and, role-not, product, and inverse.?

The logic to use is “attributive concept language with complements” because of nice properties...



