
790-132: Principled Security Spring 2017

Hyperproperties
Lecturer: Lee Barnett Date: January 19

1 Introduction

Some security policies are not easily expressed as properties of individual execution traces.

Example. Service-level agreements, non-interference, secure information flow

More generally, any policy that stipulates relations among traces is not a property. We want to extend the
theory for trace properties (like we saw in Calvin’s talk) to formalize security policies in the same way.

Formalize security policies as properties of systems, which we represent by sets of execution traces. Then

Definition. A hyperproperty is a set of trace properties.

Qualities of system behavior can be specified as hyperproperties. Thus hyperproperties can describe both
trace properties and security policies.

Like trace properties, every hyperproperty is expressible as the intersection of a safety hyperproperty and a
liveness hyperproperty.

2 Hyperproperties

Σ – finite set of states

t – trace, where t ∈ Σ∗ ∪ Σω =: Ψ

t[i], t[..i], t[i..] – same as last time

t ≤ t′ – t is a prefix of t′

π – system, where π ⊆ Σω and π 6= ∅

Prop := P(Σω) – set of trace properties

For P ∈ Prop and set of traces T , say T satisfies P (written T |= P ) when T ⊆ P

We need hyperproperties to specify certain security policies, but notice that some policies are expressible as
trace properties this way.

Example. Guaranteed Service. Policy requiring that every request is eventually satisfied. Let isReq(s) and
isRespToReq(s′, s) be state predicates. Can specify the policy as

{t ∈ Σω | ∀i ∈ N (isReq(t[i]) =⇒ ∃j > i (isRespToReq(t[j], t[i])))}

1



2

The set of all hyperproperties HP is defined as P(Prop)

Definition. A set T of traces satisfies a hyperproperty H, written T |= H, when T ∈H.

Definition. The lift of a trace property P is the hyperproperty [P ] := P(P )

We can describe security policies not expressible as trace properties using hyperproperties.

Example. Mean response time. Policy requiring that the mean response time over all executions in a system
is less than 1 second. Let respTimes(t) be the set of response times (in seconds) from request/response
events in a trace t. Can specify the policy as

RT =

{
T ∈ Prop

∣∣∣∣∣ avg

(⋃
t∈T

respTimes(t)

)
≤ 1

}

Example. Non-interference. Policy requiring that commands issued by high-level users should be removable
without affecting low-level user observations. For trace t define

• ev(t) – sequence of input / output events occurring when system transitions between the states of t

• evL(t) – low-level events in ev(t)

• evH-in(t) – high-level input events in ev(t).

Can specify the policy as

NI = {T ∈ Prop | T ∈ SM ∧ ∀t ∈ T (∃t′ ∈ T (evH-in(t′) = ε ∧ evL(t′) = evL(t)))}

2.1 Hypersafety

Covered safety properties last time. Slightly different formulation:

Definition. A trace property S is a safety property if

∀t ∈ Σω (t 6∈ S =⇒ ∃m ∈ Σ∗ (m ≤ t ∧ ∀t′ ∈ Σω (m ≤ t′ =⇒ t′ 6∈ S)))

Want to generalize this to define safety hyperproperties. Need the following:

Obs := Pfin(Σ∗) – set of observations (collection of finite traces)

T ≤ T ′ for sets of traces T, T ′ if for each trace t ∈ T there is a t′ ∈ T ′ such that t ≤ t′.

Definition. A hyperproperty S is a safety hyperproperty, or is hypersafety, if

∀T ∈ Prop (T 6∈ S =⇒ ∃M ∈ Obs (M ≤ T ∧ (∀T ′ ∈ Prop (M ≤ T ′ =⇒ T ′ 6∈ S))))

Example. Non-interference NI above is hypersafety.

S is a safety property iff [S] is a safety hyperproperty.



3

2.2 Hyperliveness

Covered liveness properties last time. Again, slightly different formulation:

Definition. A trace property L is a liveness property if

∀t ∈ Σ∗ (∃t′ ∈ Σω (t ≤ t′ ∧ t′ ∈ L))

Want to generalize to get hyperliveness (in the same way we did from safety to hypersafety)

Definition. A hyperproperty L is a liveness hyperproperty, or is hyperliveness, if

∀T ∈ Obs (∃T ′ ∈ Prop (T ≤ T ′ ∧ T ′ ∈ L))

Example. Mean-response time RT above is hyperliveness.

L is a liveness property iff [L] is a liveness hyperproperty.

2.3 Other hyperproperties

Not all hyperproperties are hypersafety or hyperliveness.

Example. Medical information system. Must (1) maintain confidentiality of patient records and (2) eventually
notify patients when their records are accessed.

Recall that all trace properties are the intersection of a safety property and a liveness property. Analogous
result holds for hyperproperties:

Theorem. ∀P ∈HP (∃S ∈ SHP ,L ∈ LHP (P = S ∩L))

3 Topology

Broad area of math dealing with properties of space preserved under continuous deformations

“A cardinal principle of modern mathematical research may be stated as a maxim: One must
always topologize.” – Marshall Stone

Topological space– (S, τ) with τ ⊆ P(S) s.t. ∅ ∈ τ , S ∈ τ , and τ is closed under finite intersections and
(arbitrary) unions.

Elements of a topology are called open sets. The complement of an open set is a closed set.

A set that intersects every nonempty open set is called dense.

A basis for a topology is a collection of sets B such that every open set is a union of elements in B.

A subbasis is a collection of sets A such that the finite intersections of elements of A form a basis.



4

3.1 Topology of properties

Definition. A property O is observable if

∀t ∈ Σω (t ∈ O =⇒ (∃m ∈ Σ∗ (m ≤ t ∧ (∀t′ ∈ Σω (m ≤ t′ =⇒ t′ ∈ O)))))

Let O– set of observable properties. Then (Σω,O) is a topological space, and O is called the Plotkin topology.

Correspondence in the Plotkin topology:

• Closed sets are safety properties

• Dense sets are liveness properties

Can prove the intersection theorem about trace properties using this topology.

3.2 Topology of hyperproperties

Want to construct a topology that extends this correspondence to hyperproperties.

↑M := {T ∈ Prop | M ≤ T} – completion of an observation M ∈ Obs.

Then OSB := {↑M | M ∈ Obs} is a subbasis for such a topology.

This is in fact a well-known topology called the Vietoris topology.

Let C– closed sets, D– dense sets. Then:

• SHP = C

• LHP = D

4 Remarks

SP – set of all safety properties is not hypersafety (in fact it is hyperliveness)

LP – set of all liveness properties is hyperliveness

Only hyperproperty that is both hyperliveness and hypersafety is true := Prop.

Note also that false := {∅} is hypersafety but not hyperliveness.

References

[1] M. Clarkson and F. Schneider, “Hyperproperties,” Journal of Computer Security, 18, 2010,
pp. 1157–1210.


