790-132: Principled Security Spring 2017

A Method for Verifying Privacy-Type Properties

Lecturer: Lee Barnett Date: March 30
1 Introduction
e Motivation: need to be able to formally verify privacy protocols.
e Goal: focus on two properties which stipulate that a user can:
(a) make multiple uses of a service without others being able to link them together (unlinkability),
(b) use a service without disclosing their identity (anonymity).
e But (a) and (b) are not definable as traces properties, so typically formulate them as equivalence
relations. Problem: these are hard to check automatically (they do not scale well).
e Approach: devise sufficient (easy to check) conditions which imply (a) and (b) hold, for a large class
of 2-party protocols
2 Model
e Security protocols are modeled using a process calculus:
— participants as processes,
— communication between participants as elements of a term algebra.
2.1 Term algebra

T(F, A) — freely generated algebraic structure over set A and signature F' (i.e., the initial F-algebra).
¥ =X¥.UX, — signature; X, of constructors, ¥4 of destructors

N —set of names; X, W — sets of variables (X N W = ()

Constructor term u € T (X, N U X) is a message if u is ground

T (X, N UZX) subject to an equational theory F (i.e., congruence =g; gen.’d by eq.’s over T (2, X))
Computation relation JC T(X,N) x T(Z.,N)

— rel. each ground term to at most one (wrt E) message (if ground term ¢ isn’t rel. to any message
then say computation fails, write tf)

— Define |} via a rewrite relation — (which is confluent and terminating wrt E).
Example: let X = {(enC7 2)a (dec, Q)a (< >7 2)a (Wla 1); (772a 1)7 (@7 2)7 (0’ 0)7 (e(l7 2)7 (Ok’ 0)}
— Y= {enc,(>7@7070k}7 Yg=X \ Ye

3.1

—z00=z,20r=0, 2By Pz=2d(y®z2),rdy=ydx
— dec(enc(z,y),y) = =, eq(x,x) — ok, m;((x1,x2)) — x;

Split X into Xpub, Xpriv. Attacker builds messages applying f € ¥pup to terms avail. through W

Le. attacker computations are terms of T (Xpun, W) called recipes

Process calculus

C — set of (public) communication channels

Syntax for processes: P,@Q := 0| in(c,z).P | out(c,u).P|let T=7 in P else Q| P|Q|!P |vn.P
— let construction: if (3 messages U s.t. T |} w) then P[u/T] executes, otherwise @) executes

(Operational) semantics for processes: labeled transition system over configurations K = (P; ¢):

— P — multiset of ground processes (null processes implicitly removed)

— ¢ ={wy = uq,...,w, — up} —frame, represents messages known by attacker

2, — transition relation, rules are fairly intuitive. ——=="s — transitive closure of —.
Example: RFID protocol. Using example term algebra above, P := vk. (vn;.Pr | vng.Pg), where:
— P = out(cr,ny).in(cr, x1).1et a9, 13 = eq(ni, m1(u)), mo(u) in out(cr,enc({x3,ns), k))
— Pg = in(cg,y1).out(cg,enc({y1,nr), k)).in(cgr, y2).let y3 = eq(yz,enc({ng,y1),k)) in 0
Normal execution of one session of protocol: P -5 (0; o), where:

— tr = 7.r.m.Tout(cr, w).in(cg, wy).out(cr, wa).in(cr, wa).Tehen-out(cr, ws).in(cr, W3) . Tthen

— ¢o = {wy — nj,we — enc((nf,ny), k"), ws — enc((n’p,n}), k')}
static equivalence ¢ ~ ¢’ between frames

trace equivalence K ~ K’ between configurations

Protocols & properties

Consider 2-party protocols, two roles: initiator and responder

Initiator is a ground process Py ::= 0 | l:out(c, u).Pr (where [€ £ is a syntactic label)
Responder is Pr =0 | in(c,y).let T=7 in P | in(c,y).let T=7 in P; else [:out(c,u’)
I = (k,n7,7g,Z,R) — protocol

My ="wk.(\vn7.Z | 'wig.R) — rep. arbitrary number of agents, arbitrary number of sessions

St :=wk.(vn7.Z | vAg.R) — rep. arbitrary number of agents, at most one session each

Unlinkability

IT preserves unlinkability wrt Z and R if My = S

3.2 Anonymity
e id C k — set of identities
o M= My | vk.(\wat.Zy | 'wiir.Ro) —process where Zy, Ro— new agents, disclosed their identity

e II preserves anonymity wrt id if My ~ M9,

4 Two conditions

o A(k,m) — annotation (A € {I, R})
e 7, afa] —annotated action, P[a] —annotated process
e Annotated semantics for processes:

— Agents in the multiset of processes— each annotated by its identity

— Actions (other than 7)— each annotated with the identity of the agent responsible for it

4.1 Frame opacity

e In any execution, outputs are indistinguishable from randomness
e Define []i : T(Z., N) = T(Z, {0O}) by
— [u]'de! = f(fug)ideal L w9 if w =g fug,...,u,) for f e X, or

— [u]iea!l = O otherwise;

Jideal — [p]ideal whenever u =g v.

*[U

o [u]"°" — the set inst([u]'9™) of all concretizations of [u]4®,

e Condition: II ensures frame-opacity if, for any (Mi{; () 1, (Q;0):

— T € [$]""° s.b. @ ~ 1, and
— Vw;, w; € dom(e) with the same label, [w;¢]'9% = [w;¢]!de.

4.2 Well-authentication
e A conditional let Z=7 in P else Q is safe if v € T(Zpub, {21,.. ., zn} U{u1,...,un})
o Agents Ay (k1,77), Az(ke,M2) are associated in (ta, ¢) if
— ((A1 # A3) and ky = ka);
— the interaction ta between them is honest for ¢.

ta. Tonon [A(k,71)]
e

e II is well-authenticating if, for any (M1;) (P; ¢), either

— the last action was a safe conditional, or

— A" 5 s.t. A(k,my), A'(k, iz) are associated in (ta,) and A’(k,73) not assoc. to anything else

5 Main result

e IT — protocol with identity names id C k.

e Il is w.-a. and ensures frame opacity = II ensures unlinkability and anonymity wrt id

References

[1] L. HirscHI, D. BAELDE, and S. DELAUNE, “A Method for Verifying Privacy-Type Properties: The
Unbounded Case,” IEEE Symposium on Security and Privacy, 2016, pp. 564-581.

