
790-132: Principled Security Spring 2017

A Method for Verifying Privacy-Type Properties
Lecturer: Lee Barnett Date: March 30

1 Introduction

• Motivation: need to be able to formally verify privacy protocols.

• Goal: focus on two properties which stipulate that a user can:

(a) make multiple uses of a service without others being able to link them together (unlinkability),

(b) use a service without disclosing their identity (anonymity).

• But (a) and (b) are not definable as traces properties, so typically formulate them as equivalence
relations. Problem: these are hard to check automatically (they do not scale well).

• Approach: devise sufficient (easy to check) conditions which imply (a) and (b) hold, for a large class
of 2-party protocols

2 Model

• Security protocols are modeled using a process calculus:

– participants as processes,

– communication between participants as elements of a term algebra.

2.1 Term algebra

• T (F,A) – freely generated algebraic structure over set A and signature F (i.e., the initial F -algebra).

• Σ = Σc t Σd – signature; Σc of constructors, Σd of destructors

• N – set of names; X , W – sets of variables (X ∩W = ∅)

• Constructor term u ∈ T (Σc,N ∪ X) is a message if u is ground

• T (Σc,N ∪ X) subject to an equational theory E (i.e., congruence =E ; gen.’d by eq.’s over T (Σc,X))

• Computation relation ⇓⊂ T (Σ,N)× T (Σc,N)

– rel. each ground term to at most one (wrt E) message (if ground term t isn’t rel. to any message
then say computation fails, write t��⇓)

– Define ⇓ via a rewrite relation → (which is confluent and terminating wrt E).

• Example: let Σ = {(enc, 2), (dec, 2), (〈 〉, 2), (π1, 1), (π2, 1), (⊕, 2), (0, 0), (eq, 2), (ok, 0)}

– Σc = {enc, 〈 〉,⊕, 0, ok}, Σd = Σ \ Σc

1

2

– x⊕ 0 = x, x⊕ x = 0, (x⊕ y)⊕ z = x⊕ (y ⊕ z), x⊕ y = y ⊕ x
– dec(enc(x, y), y)→ x, eq(x, x)→ ok, πi(〈x1, x2〉)→ xi

• Split Σ into Σpub, Σpriv. Attacker builds messages applying f ∈ Σpub to terms avail. through W

• I.e. attacker computations are terms of T (Σpub,W) called recipes

2.2 Process calculus

• C – set of (public) communication channels

• Syntax for processes: P,Q := 0 | in(c, x).P | out(c, u).P | let x = v in P else Q | P |Q | !P | νn.P

– let construction: if (∃ messages u s.t. v ⇓ u) then P [u/x] executes, otherwise Q executes

• (Operational) semantics for processes: labeled transition system over configurations K = (P;φ):

– P – multiset of ground processes (null processes implicitly removed)

– φ = {w1 7→ u1, . . . , wn 7→ un} –frame, represents messages known by attacker

• α−→ – transition relation, rules are fairly intuitive.
α1...αn−−−−−→ – transitive closure of

α→.

• Example: RFID protocol. Using example term algebra above, P := νk. (νnI .PI | νnR.PR), where:

– PI = out(cI , nI).in(cI , x1).let x2, x3 = eq(ni, π1(u)), π2(u) in out(cI , enc(〈x3, nI〉, k))

– PR = in(cR, y1).out(cR, enc(〈y1, nR〉, k)).in(cR, y2).let y3 = eq(y2, enc(〈nR, y1〉, k)) in 0

• Normal execution of one session of protocol: P
tr−→ (∅;φ0), where:

– tr = τ.τ.τ.τ.out(cI , w1).in(cR, w1).out(cR, w2).in(cI , w2).τthen.out(cI , w3).in(cR, w3).τthen

– φ0 = {w1 7→ n′I , w2 7→ enc(〈n′I , n′R〉, k′), w3 7→ enc(〈n′R, n′I〉, k′)}

• static equivalence φ ∼ φ′ between frames

• trace equivalence K ≈ K ′ between configurations

3 Protocols & properties

• Consider 2-party protocols, two roles: initiator and responder

• Initiator is a ground process PI ::= 0 | l:out(c, u).PR (where l ∈ L is a syntactic label)

• Responder is PR ::= 0 | in(c, y).let x = v in PI | in(c, y).let x = v in PI else l:out(c′, u′)

• Π = (k, nI , nR, I,R) – protocol

• MΠ :=!νk.(!νnI .I | !νnR.R) – rep. arbitrary number of agents, arbitrary number of sessions

• SΠ :=!νk.(νnI .I | νnR.R) – rep. arbitrary number of agents, at most one session each

3.1 Unlinkability

• Π preserves unlinkability wrt I and R if MΠ ≈ SΠ

3

3.2 Anonymity

• id ⊆ k – set of identities

• Mid
Π :=MΠ | νk.(!νnI .I0 | !νnR.R0) –process where I0,R0– new agents, disclosed their identity

• Π preserves anonymity wrt id if MΠ ≈Mid
Π .

4 Two conditions

• A(k, n) – annotation (A ∈ {I,R})

• τ , α[a] –annotated action, P [a] –annotated process

• Annotated semantics for processes:

– Agents in the multiset of processes– each annotated by its identity

– Actions (other than τ)– each annotated with the identity of the agent responsible for it

4.1 Frame opacity

• In any execution, outputs are indistinguishable from randomness

• Define [·]ideal : T (Σc,N)→ T (Σt, {�}) by

– [u]ideal = f([u1]ideal, . . . , [un]ideal) if u =E f(u1, . . . , un) for f ∈ Σt, or

– [u]ideal = � otherwise;

– [u]ideal = [v]ideal whenever u =E v.

• [u]nonce – the set inst([u]ideal) of all concretizations of [u]ideal.

• Condition: Π ensures frame-opacity if, for any (Mid
Π ; ∅) ta−→ (Q; ∅):

– ∃ψ ∈ [φ]nonce s.t. φ ∼ ψ, and

– ∀wi, wj ∈ dom(φ) with the same label, [wiφ]ideal = [wjφ]ideal.

4.2 Well-authentication

• A conditional let x = v in P else Q is safe if v ∈ T (Σpub, {x1, . . . , xn} ∪ {u1, . . . , un})

• Agents A1(k1, n1), A2(k2, n2) are associated in (ta, φ) if

– ((A1 6= A2) and k1 = k2);

– the interaction ta between them is honest for φ.

• Π is well-authenticating if, for any (Mid
Π ; ∅) ta.τthen[A(k,n1)]−−−−−−−−−−−→ (P;φ), either

– the last action was a safe conditional, or

– ∃A′, n2 s.t. A(k, n1), A′(k, n2) are associated in (ta, φ) and A′(k, n2) not assoc. to anything else

4

5 Main result

• Π – protocol with identity names id ⊆ k.

• Π is w.-a. and ensures frame opacity ⇒ Π ensures unlinkability and anonymity wrt id

References

[1] L. Hirschi, D. Baelde, and S. Delaune, “A Method for Verifying Privacy-Type Properties: The
Unbounded Case,” IEEE Symposium on Security and Privacy, 2016, pp. 564–581.

