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Introduction
Interface-confinement is a sandbox mechanism by which system resources are restricted 

behind a set of defined interfaces. When running untrusted code in the sandbox, the code can only 
request access to those resources that are behind the available interfaces.

System M is a program logic for modeling, proving and reasoning about safety properties of a 
system under analysis. The following sections outline the structure of System M.

System M
Term syntax:

• Base values: true, false, thread ID, memory location, integer
• Expressions: variables, base values, varying types of functions, func application, suspended 

computation
• Actions: read, write, check
• Computations: atomic action, return, sequential composition, branching

Concurrent system configuration syntax:

• Stack: a stack of frames. A frame is x.c, where x binds the return expression of the computation 
preceding c.

• Thread: A triple <Thread_ID, Stack, Computation or Expression or Stuck>
◦ Stuck means thread performed illegal action

• Configuration: shared state σ that presides over all threads in a system



System M operates on small-step transitions, which advance the system by one computation step. 
Small-step transitions are defined by the relation σ▹T ↪σ '▹T ' . A sample of the transitions are 
provided below.

• R-ACTS: next() returns a new shared state and the resulting expression from a. If e is not the 
stuck expression, then the new thread state pops off the frame x.c, e binds to x, and c is the next 
state.
◦ This is like saying c(x=a()), where x is c’s argument.

▪ The process of binding e to x and then evaluating the expression is beta reduction.
• R-ACTF: if next() returns a stuck expression, then the thread becomes stuck.

A trace is is a finite sequence of reductions, which aligns with the notion of thread execution.

A time point is an natural number (i.e. clock time) associated with a reduction in a trace. Time points 
are monotonically increasing over a trace.

Interface Confinement Example: Counter
A simple interface to increment, get, and execute-and-print a counter value in memory. The desired 
invariant is cnt can never decrease.



• inc: increment counter
• get: get counter value
• prn: execute code y, then print counter.
• c: a computation involving downloading untrusted code and running it with the inc,get,prn 

interfaces.
◦ “check” makes sure the code doesn’t have any actions that can modify cnt directly.
◦ Given the three interfaces, cnt should never decrease.

Types

System M defines a set of types.

• The type of a variable x is denoted as x:type.
• Expr type: type variables, base types, dependent function types, invariant types

◦ FAE describes expressions that syntactically don’t have any action symbols.
• Computation type: a pair (<partial correctness assertion, invariant assertion>)

◦ Partial correctness asserts a computation, if it terminates, will satisfy φ1 and have return 
type τ .

◦ Invariant asserts the effects of computation during evaluation.
• The “self” expression refers to the current thread evaluating an action or expression.
• Execution context: a tuple of (<start time>, <end time>)

An important expression type is inv(Ξ.φ). An expression of this type, when evaluated, preserves 
invariant φ over the execution context Ξ.

Using the Counter example, here is an invariant that says the counter cnt never decreases in the time 
interval [ub ,ue] .

• eval cnt l: a predicate that is true if expr cnt beta-reduces to expr l. That is, cnt is a memory 
location expression that reduces to l.

• mem l v t: a predicate that is true if memory location l has value v at time t.



Type Semantics
The interpretation of an expression type \tau is a semantic type, C.
C is a set of pairs, (<step index>, <expression>).

• Step index is a number associated with a reduction step.
• Expression must be in normal form, meaning it cannot be reduced any further.

The set of all semantic types, Type:

Interpretation of Computation Types
Interpretation of a computation type is denoted .

• This is a set of step-indexed computations, which are pairs (k, c). 
• θ is a partial map from type variables to Type.
• K=(tb , t e) , is the time interval in which c executes.
• ι is thread identifier
• T is the trace
• The following graphic shows an example trace T and the symbols in .

Interpretation of Expression Types
Two interpretations:

• value interpretation, 
◦ RV[any]: set of all pairs of (k, nf), where k is a natural number.
◦ RV[X], X is type variable: θ(X)
◦ RV[inv(Ξ.φ)]: union of (1) stuck terms, (2) suspended computations, (3) indexed functions, 

(4) recursive functions, and (5) polymorphic functions.
• expression interpretation, 

◦  lifts the value interpretation . Each pair (k, e) satisfies that, for j≤k, e reduces 
to beta normal form e’ in j steps, and that (k-j, e’) is in .

Formula Semantics
Formulas are interpreted over traces T.

A sample of formula semantics is listed below.
• ε(T) is the set of atomic formulas that are true over T.



• start(e1, comp(c), e2) is a predicate that execution of computation c by the thread whose ID e1 
reduces to starts at e2.

Type System and Assertion Logic
Several environment contexts for typing judgements:

• Θ: type variables
• Σ: specifications for action symbols
• Γ: type bindings
• Δ: logical assertions
• Ξ: compuation execution time interval
• self: the ID of the thread currently executing a computation

Examples of typing judgements are listed below.

Silent threads
• Threads that either perform non-effectful reductions or do not perform reductions at all.
• The following states that if the invariant is true and the invariant is closed under (Ξ,Γ), then the 

invariant holds under non-effectful reductions/no reductions.

Computation Typing
Typing of computations, with the possible computations below.

• act(a)
• ret(e)
• letc(c1, x.c2)
• lete(e, x.c)
• if e then c_1 else c_2

A sampling of the ACT and RET typing rules are listed below.



• Act(…) draws actions from specifications from Σ.
◦ Sample actions: read, write, and check.
◦ Example: the type for the read action takes a memory location as argument.

Expression Typing
Typing of expressions involve assigning types to expressions. Examples below show typing to ANY 
and typing to INV.

Invariant φ should be trace composable.
• Γ .Ξ .φ is trace composable if given a substitution φ for Γ, three time points t_1, t_2, and t_3,

such that t1≤t2≤t 3,(φ(t 1, t 2)γ∧φ(t 2, t3)γ)⇒φ(t1, t 3)γ .

Soundness
Soundness of System M’s type system is proved relative to the semantic interpretation model of 
computation types, expression types, and formula semantics.



Composition and Rely-Guarantee Reasoning

Composition gives System M the ability to reason about distributed system with multiple running 
programs. System M uses a rely-guarantee style reasoning to compose local properties of programs 
running concurrently. Rely-Guarantee is a technique for reasoning about concurrent programs where 
programs can rely on the environment conforming to interference specifications, and the program is 
expected to guarantee that it conforms to its own interference specifications.

The following are three conditions for System M’s rely-guarantee reasoning. ψ(i ,u) is the local 
guarantee of the thread i at time u. Predicate ζ is a set of threads that affect the state captured by the 
invariant φ .

• RG1: invariant holds at t i

• RG2: if invariant holds at all time points strictly less than u, then ψ(i ,u) holds for each i in
ζ .

• RG3: If RG2 holds, then φ(u) holds.

Example

Same counter example, but there are two threads. Initially, thread 1 has the lock. Would like to show 
that φ(0,∞) holds; that is, the counter never decreases.



Must prove that RG1, RG2, and RG3 holds.
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