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Emerson is co-inventor and co-developer of model checking , an algorithmic method of verifying 
nominally finite-state concurrent programs. The method was proposed in 1981 in a paper widely 
recognized as seminal for founding today's broad field of model checking and establishing its basic 
principles. He won the 2007 A.M. Turing Award along with Edmund M. Clarke and Joseph Sifakis for 
the invention and development of Model checking.

The Verification Problem 

As defined in the paper the problem asks if given some program M and specification h, then is it 
possible to determine whether the behavior of M meets the specification h. 

A famous example of this is the halting problem proposed by Turing which states that given a Turing 
machine M with the specification h that the machine eventually should halt. The condensed version of 
the proof goes something like this. Assume we have a black box program/algorithm that can tell us if a 
program will halt. Then we modify that program so if it does halt it loops forever and if doesn't halt 
then it immediately halts. So a program that never halts will halt but a program that halts infinitely 
loops which is a contradiction. 

Model checking like symbolic execution we discussed on Tuesday was created as a result of the 
difficulties of manual proofs and the difficulties when reasoning about concurrent programs. I 
particularly liked the analogy to the task of a human adding 100,000 decimal numbers of 1,000 digits 
each. This is rudimentary in principle, but likely impossible in practice for any human to perform 
reliably.  It's an example of the verification problem. For instance my research involves modeling 
individual instructions from the x86 architecture and verifying the specifications of the manuals and 
general security principles are upheld.

The first step towards model checking was recognizing temporal logic could be applied to the 
properties 

Linear Temporal Logic



G ¬(owns1  owns2) : It is never the case that both processes own the resource. ∧

G(req1  F owns1) : Whenever process 1 has requested the resource, it will eventually⇒
obtain it. 

G F(req1  ¬(owns1  owns2))  G F owns1 : If it is infinitely often the case that∧ ∨ ⇒
process 1 has requested the resource when the resource is free, then process 1 in-
finitely often owns the resource. 

Branching Temporal Logic

In CTL*, the temporal operators can be freely mixed. In CTL, the operator must always be 
grouped in two: one path operator followed by a state operator. CTL* is strictly more 
expressive than CTL.

The Mu-calculus may be thought of as extending CTL with a least fxpoint (u) and greatest 
fixpoint (v) operator. A fixpoint is where f(x) = x. So for example f(x^2) has the least fixpoint when x 
=0 and the greatest when x = 1.  It provides a single, simple and uniform framework that 
characterizes modalities in terms of recursively defned tree-like patterns subsuming most 
other logics of interest for reasoning.

Emerson used this combination of the tree-like structures which allows for recursion and Mu-
calculus’ ability to express other LTL and CTL formulas to apply the Tarski-Knaster theorem 
which acted to verify the model. 
 
Since this isn’t the current way model checkers verify models there isn’t a signifcant amount 
of information about this technique that I could fnd. 

A more modern technique is to turn both the implementation and specifcation into an 
automata. If a sequence is accepted by M imp then it is also accepted by Mspec and only if 

https://en.wikipedia.org/wiki/CTL*
https://en.wikipedia.org/wiki/CTL*


this holds true can the specifcation be said to be upheld. This can be determined 
algorithmically

State Explosion Problem 

One of the major problems with model checking is the more complicated the model is the 
number of states grows exponentially. There are a number of ways to combat this problems

Abstraction 

Given original system M an abstraction is obtained by suppressing detail yielding a simpler 
and likely smaller system M that is, ideally, equivalent to M for purposes of verifcation. The 
precise nature of the abstraction and the correspondence between M and M can vary 
considerably. For example in my research there may be a property that is only considering the
current privilege level (what ring the cpu is in) so even though other registers are being 
affected at the same time I don’t specifcally need to include them in my model. 



Symmetry 
If there are multiple instances of the same module, then it may be possible to only model one 
of those modules because if one fails to meet the specifcations then they all will fail. 

Compositional Reasoning 
It may be possible to split a larger model into its individual components for modeling. In my 
research we accomplish this by giving the component symbolic inputs. This means any 
possible input given by the larger part of the model is considered.

Theoretical Improvements 
Structures such as Binary Decision Diagrams can be used to represent state transition 
systems more efficiently. Partial order reduction is used for reducing the size of the state-
space to be searched by exploiting the commutativity of concurrently executed transitions 
which result in the same state when executed in different orders.

Practical Improvements 

The increase of computing power and memory acts in a brute force way to handle the state explosion 
problem

Some personal thoughts on model checking

From my personal experience sometime creating the model can be easy but it can be difficult 
to fnd the specifcation or combination of specifcations that ensures your model is valid 
when the model is sufficiently complex. In regards to my research creating the models for the 
individual instructions is relatively simple, but fnding a specifcation that tests the model in a 
nontrivial way is a lengthy, research-flled process.

Additionally the model you are making is much more abstract than you would frst imagine. 
Often you don’t have to model the minor details. For example when making sure an address 
in canonical you don’t have to explicitly test that the 48th bit through the 64th bit are all zeros 
or ones 

Example of Model Checking

 I want to show you a simple example using UCLID, the software I use, which is slightly different as it 
allows for the modeling of infinite state systems. 

I want to show a toy model in Uclid that shows what a model, counter-examples, and assertions look 
like.



Thoughts about the paper

I thought this paper was a little weak in the fact it seemed to bounce around from topic to topic without 
really giving the depth needed for any one in particular. It was more interesting from a historical 
perspective than a computer science one in my opinion

Does anyone else have opinions about the paper?

What did you think of the grand challenges he presented at the end of the paper

Grand Challenge for Hardware. Hardware designs with a few hundreds to thousands of state 
variables can be model checked in some fashion; but not an entire microprocessor. It would 
be a Grand Challenge to verify an entire microprocessor with one hundred thousand state 
variables. 

Grand Challenge for Software. Software device drivers have been shown amenable to 
software model checking. These are mostly sequential software with up to one hundred 
thousand lines of code. Of course, there is software with millions of lines of code. Windows 
Vista contains somewhat over 50 million lines of code, and entails concurrency as well. It 
would be a Grand Challenge to to verify software with millions to tens of millions lines of code


