Lecture notes:
Verification with Small and Short Worlds (S2W)

Presenter: Jaesung Park

Feb 28, 2017

1 Overview

1. Problem statement
 (a) System model for large arrays and data structures
 (b) Safety property to verify

2. Methodology of S2W
 (a) Induction, if we are lucky
 (b) Small World, restricting the search space
 (c) Short World, bounding the number of steps

3. Evaluation
 (a) Table Look-ahead Buffer (TLB) of Bochs x86 emulator
 (b) Set-associative cache and Content Adressable Memory (CAM)
 (c) Shadow paging
2 Problem Statement

2.1 System Model

\[S = (I, O, \mathcal{V}, Init, A) \] : system model

\(I \) : a finite set of input variables
\(O \) : a finite set of output variables
\(\mathcal{V} \) : a finite set of variables
\(Init \) : a finite set of initial values
\(A \) : a finite set of actions

\[I = \{ addr \} \]
\[O = \{ out \} \]
\[\mathcal{V} = \{ \text{mem, cache} \} \]
\(Init = (\text{mem}_0, \text{cache}_0) \)
\(A \) : updating cache and return the value in mem

2.2 Problem Definition

The goal is to verify \(G\Phi \), the temporal safety property we are interested in.

\(G \) : the temporal operator “always”
\(\Phi \) : the temporal operator “always”

In the example,

\[\Phi_2 = \forall x. (addr = x) \rightarrow ((\text{cache}.addr = addr \land \text{cache}.addr \neq 0) \rightarrow \text{cache}.data = \text{mem}[addr]) \].
3 Methodology of S2W

3.1 Induction

Using one-step induction,

\[\text{Init}(V) \rightarrow \Phi(V) \]
\[\Phi(V) \land R(V, V') \rightarrow \Phi(V') . \]

If both checks pass, the verification is complete. Otherwise, S2W continues.

In the example, induction fails when

\[\text{mem}[i] := a, \quad \text{mem}[j] := b, \quad \text{cache.addr} := i, \quad \text{cache.data} := z, \]

and read(i) is given.

3.2 Small World

Instantiate the free variables in \(\Phi \) with symbols. It defines a dependence set (\(U \)).

In the example,

\[\Phi_2 = \forall x. (\text{addr} = x) \rightarrow ((\text{cache.addr} = \text{addr} \land \text{cache.addr} \neq 0) \rightarrow \text{cache.data} = \text{mem[addr]}) . \]

In the form of \(\forall x. \Phi(x) \), replacing \(x \) with a fixed symbolic value \(a \), we verify \(\Phi(a) \), and \(U = \{ \text{mem}[a], \text{cache} \} \).

In result, the search space is restricted.

This way, the state space is reduced from \(2^{3}4 \) states to the following 16 states:

\[
\{ \text{cache.addr} = a, \text{cache.addr} \neq a, \text{cache.addr} = 0, \text{cache.addr} \neq 0 \}
\times \{ \text{cache.data} = 0, \text{cache.data} = 1 \} \times \{ \text{mem}[a] = 0, \text{mem}[a] = 1 \} .
\]
3.3 Short World

Diameter D of the abstract model, the smallest integer where for every reachable states, there is a sequence of inputs of length $\leq D$.

Find the upper bound of D denoted by k, then run Bounded Model Checking (BMC) with the maximum number of steps k.

In result, the search space is restricted.

In the example, at most 2 steps are used to reach all reachable states.

4 Evaluation

4.1 Bochs’ TLB

Safety property to verify:

"Does TLB indicate the correct a physical address with respect to a virtual address, if TLB has the entry?"

1. **Induction**: fails.
2. **Small World**: looking only at a specific location of memory and page entry.
3. **Short World**: bounded by 9 steps.

BMC took 25 45 minutes in S^2W.

Diagram showing TLB and Page Table interaction.
4.2 Content Addressable Memory

Safety property to verify:

“Do the CAM and memory have the same data for all keys present in CAM?”

1. **Induction**: fails.

2. **Small World**: looking only at $\text{mem}[a]$, $\text{map}[a]$ and $\text{cam}[\text{map}[a]]$.

3. **Short World**: bounded by 5 steps.

BMC took 5 15 seconds in S^3W.
4.3 Shadow Paging

Safety property to verify:
(1) "Is the address under fixed limit, if page size extension bit is on?"
(2) "Is the address under fixed limit, if page size extension bit is off?"

1. **Induction**: (1) success, (2) fails.
2. **Small World**: (2) looking only at sPDT[ai] and SPT[aj].
3. **Short World**: (2) bounded by 4 steps.

BMC took < 1 minute in S^2W for verifying (2).