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Testing Symbolic Execution Proving 

Exercises a single program 
trace--Dynamic 

Tries to exhaust all program 
traces--Dynamic 

Need not be dynamic 

Ensures property holds on 
single trace 

Ensures property holds on as 
much as maybe executed 

Ensures property holds for 
entire program 

Fuzzing: number of test 
cases is determined by how 
many RNG produces. 

Number of cases is 
determined by the branching 
behavior of the program 

 

 
Questions: 
How much human involvement is needed in each of the cases?  How can we eliminate 
humans? 
Why is proving difficult?  We’ve really only talked about how we can specify these things so far. 
How does one go about generating good test cases? 
All three cases have to have an idea of what good or bad is.  The formulation and specificity 
needed may vary. 
Problem: still need to determine what the code *should* do. 

Ideal: 
The authors list 3 reasons their approach is ideal: 

1. The authors restrict themselves to arbitrary length integers (this impediment has been 
improved upon since) 

2. Manny programs have infinite execution trees (this is a fundamental problem) 
3. Theorem proving for modest programming languages is impossible (advancements have 

been made here too) 
Section 9 mentions what would happen if a theorem prover said that an IF statement could be 
resolved if it couldn’t.  The path would be taken, when it should not be, and we would have an 
over approximation of what could actually happen in the system, and a path condition that 
should evaluate to false. 



 

Programming language: 
Variables: all of type signed integer 
F , THEN, ELSEI    

: transfers program control to a specified labeloToG  
Means of obtaining inputs (parameters, read operations, global variables) 
Arithmetic expressions: integer operators: , ,×  +  −   
Boolean expression: arithexpr 0}{ ≥   
Symbolic values (from program input): α{ 1 ..α }. i  
Integer polynomials: expressions formed over:  , integer coefficients,  (,  ),α{ 1 ..α }. i  

, , ,×  +  −  arithexpr 0}{ ≥   
Assignment : : transfers  an integer polynomial to a variable←  

 
 

State: values of program variables, position of the program counter, cp  
: path constraint,  boolean expression over symbolic inputs   (initialized tocp α{ 1 ..α }. i  

true, always satisfiable) 
Takes the form : a polynomial over the set  : . May be of the form   orR α{ 1 ..α }. i R )( ≥ 0  

(R )¬ ≥ 0  
Example:  {α  2 (α )}R =  1 ≥ 0 ⋀ α1 +  × α2 ≥ 0 ⋀ ¬ 2 ≥ 0  
 

Evaluating IF( ): if  take the if side, or  take the else case.  Otherwise,q ≥ 0 c p ⊃ q c qp ⊃ ¬  
execute the IF with , and execute the ELSE with .c pcp =  ⋀ q c pc qp =  ⋀ ¬  

Trees: 
Node: corresponds to a single instruction 
Branch: corresponds to a forking IF, one subtree corresponds to the statement being 
true, the other false. 

Properties: 
 in distinct branches will be distinctcp  

There exist concrete inputs to reach any branch 
 

How if statement works: 
1. FOO: PROCEDURE(A);  // c true}, Ap = {  = α1  
2.        IF(A)  
3.        THEN: PRINT(“HAPPY TUESDAY”);  // c α }p = { 1 ≥ 0  
4.        ELSE: PRINT(“IT IS NOT TUESDAY”); // c ¬(α )}p = { 1 ≥ 0  
5.        RETURN; 

 
Sum: 



 

1. SUM: PROCEDURE(A, B, C); 
2.       X  A + B;←  
3.       Y  B + C;←  
4.       Z  X + Y - B;←  
5.       RETURN(Z); 
6. END; 

 

 
POWER: 

1. POWER: PROCEDURE(X, Y); 
2.             Z  1;←  
3.             J  1;←  
4. LAB: IF Y J THEN≥  
5.          DO; Z  Z  X;← ×  
6.                 J  J + 1;←  
7.          GO TO LAB; END; 
8.          RETURN(Z); 

END;

 
 



 

 
TWOLOOPS:  this is interesting because the first loop essentially concretizes N, so the following 
loop does not result in a fork.  They added DO semantics on the fly--could be done with GOTO 
and IFs. 
 

1. TWOLOOPS: PROCEDURE(N); 
2.            DO J = 1 TO N; 
3.                   (body of statement) 
4.            DO K = 1 TO N; 
5.                   (body of statement) 
6.            END 

 

 

Communitivity: 
Instantiation: for all leaf nodes in a tree, replace symbolics  in the with the associated valuescp  
we would like to evaluate for.  The results are the values in the terminal node who’s cp
evaluates to true.  These nodes return identical results to actually running the program. 
 

Implementation: 
ASSUME statements: like gdb’s set, but for constraints over the .cp  
The power of the system comes down to the underlying formula simplification manipulation and 
evaluation capabilities. 
 

Example: 
Binary search from L to U (inclusive), shows how symbolics converge.  Note: array must not be 
symbolic, there is a difference between a variable with symbolic assignment, and an undefined 
number of variables. 

1. SEARCH: 
2.     PROC(A, L, U, X FOUND, J) 
3.     DCL A(*) INTEGER; 
4.     DCL (L, U, X FOUND, J) 
5.     FOUND = 0; 
6.     DO WHILE (L U & FOUND = 0)¬ >  
7.          J = (L+U)/2; 
8.          IF X = A(J) THEN FOUND = 1 
9.                ELSE IF X < A(J) 



 

10.                     THEN U = J - 1 
11.                     ELSE L = J + 1 
12.      END; 
13.     IF FOUND = 0 THEN J = L - 1 
14. END 

 

Finite subtree determined by an array with 
elements 1 to 5 has 11 nodes.

 

Unconstrained array bounds show shrinking 
bounds. SEARCH(A, “L”, “U”, “X”, FOUND, J) 

 

 

Program Correctness, Proofs, and Symbolic Execution 
Input and output predicates define the correct behavior of the program.  Verify that for all inputs 
that satisfy the input predicate, the resulting outputs (if anything) satisfy the output predicate. 
 
These connect the predicates to the program: 
ASSUME: imposes constraints on symbolic values (the constraint is added to the )cp  
PROVE(B): asks if Bc p ⊃   
ASSERT: may be a PROVE or ASSERT depending on context 
Inductive predicates: the proof is broken down into inductive predicates, which are  placed such 
that the program is broken into segments of finite length.   These allow the proof of correctness 
to be broken down into a proof of finitely many finite paths.  These are expressed with 
ASSERTS. 
 
Strategy employing symbolic execution: for every adjacent pair of ASSERTS in the program, 
change the first to an ASSUME, the latter to a PROVE, and symbolically execute the finite 
length code between, to verify that the PROVE holds, given the assume (  is initialized to true,cp  
program variables are all symbolic). 


