
Lecture Notes:
Automated Analysis of Cryptographic Protocols using Murphi,

Mitchell, Mitchell, and Stern, S&P 1997.

By Marie Nesfield

What does this paper do?

This paper presents a model checking tool (murphi) to analyze cryptographic protocols.

Discussion:

1. What does model checking do?
a. Explore finite state models.
b. Guarantee properties hold in model.

2. What sorts of things do cryptographic protocols do?
3. Are they finite state?

Protocol phases of development and associated bugs:

1. Requirements (I assume that some of these somehow translate into security properties
we’d like to verify).

2. Specification (Bugs will be covered in this paper).
3. Implementation (e.g., Heartbleed, bugs about improperly implementing the

specification’s state machine).

This paper looks at the specification phase. The murphi tool allows one to enter a specification
in the murphi language to be model checked.

We’re going to look at three protocols: Needham-Schroeder, TMN, and Kerberos.

What they do:

1. Formulate protocol
2. Add adversary to system
3. State correctness condition
4. Run the protocol
5. Change things and do again?

Power of the adversary: assume that the adversary can only decrypt things for which it has the
key. Cryptanalysis is out of scope (e.g. factoring RSA keys, RC4 weakness [1]). Probabilistic
behavior is out of scope (e.g. guessing nonces or keys). Unclear how we would allow these in a
finite state system.

Needham-Schroeder (public key)
Agents: Initiator A attempting to establish session with responder B.
Goal: achieve mutually authenticated session.
3. {N A}A → B : a, KB

6. {N , N }B → A : a b Ka
7. B should be assured that he is talking to A{N }A → B : b Kb

Problem:
1.3 {N A}A → I : a, K i

2.3 (A) {N A}I → B : a, Kb

2.6 With proposed change: (A) {N , N }B → I : a b Ka (A) {B, N , N } B → I : a b Ka

1.6. {N , N }I → A : a b Ka
1.7. {N }A → I : b K i

2.7. (A) {N }I → B : b Kb

Solution proposed by Lowe:
3. {N A}A → B : a, KB

6. {B, N , N }B → A : a b Ka
7. {N }A → B : b Kb

Modeling:
Initiator data structures:
Number of initiators variable set for verification
Initiator id (scalarset, symmetry reduction)
Where the messages are going

This is simplified modeling code for initiators:

 //this deals with the scalarset symmetry InitiatorID ∀ :
 //also deals with the scalarset symmetry AgentID ∀ :

end initial message to agent, wait s
 //this deals with the scalarset symmetry InitiatorID i ∀ :

 //also deals with the scalarset symmetry messages for i on network ∀ :
rocess response p
end f inal message s

Process response involves:
1. Remove message from network

2. Decrypt, check if message type is correct, ensure nounce checks out.
3. If valid send response.

Correctness invariant: Initiator and responder must be correctly authenticated.

Adversary: stores all messages and has 3 rules for messages on the network (one intruder is
sufficient, as has total network control):

1. Overhearing
2. Replay
3. Generating messages using known nounces (not guessed)

Discussion points:

1. What attacks won’t this rule out?
2. What are we actually verifying here?

TMN Protocol:
Goal: key distribution, obtain shared secret for use as a session key
Actors: initiator, responder, trusted server
Keys: public

1. //A shares PK and encrypted nonce with server, {N }A → S : B a KS

2. //Server shares A’s PK with BS → B : A
3. //B sends A’s PK and , {N }B → S : A b KS

N b
4. // should be able to be used as a session key, {N }S → A : B b NA

N b

Attack 1 (impersonation):
1. , {N }A → S : B a KS

2. S → B : A
3. (B) , {N }I → S : A i KS

4. , {N }S → A : B i NA

This is detected using their model in a few seconds.
Fix (in model): enforce source field matches up.

Attack 2 (eavesdropping):
Assume fix from above.

1.1. //I want to be more open with myselfI , {N }I → S : i KS

1.2. //Here you are!S → I : A

2.1. , {N }A → S : B a KS

2.2. S → B : A
2.3. , {N }B → S : A b KS

1.3. //Replay , {N }I → S : I B KS

N }{ B KS

1.4. , {N }S → I : I b N i

2.4 , {N }S → A : B i NA

Solution: make S keep track of previously used session keys.

Other attack: RSA blinding:
Fact (if the key is RSA): m} {n} mn}{ K K

= { K

Just multiply the last thing by something else. (Figure out what it should be.)
Note: they simply use a single bit to indicate that their message is blinded in model checking.

How could we do that? What state would need to be added to stuff? We’d need to model
check for different values of m. Or just change the model to have an adversary controlled field
inside the encrypted portion of the message.

Simplified Kerberos (if time):
Agents: KDS (key dist server), TGS (ticket granting server), client, server
Goal: authenticate client to server
Requirement: to authenticate self to server, client requires ticket from TGS. To authenticate
self to TGS, requires ticket from KDS.
Major difference: here the keys are symmetric. This means that all traffic can be
decrypted/encrypted with the same key.

Note: , are secret keys.K tgs Kc

Protocol:
1. //client requests ticket for TGS from KDCDC C, TGS C → K :
2. DC {K } , {C, K } K → C : S1 KC

 S1 KTGS

 is the ticket for the TGS.C, K } { S1 KTGS

 is a new session key generated by KDC to be used for communication between CKS1
and TGS

3. GS {C} , {C, K } , S C → T : KS1
 S1 KTGS

 is C’s identity encrypted with (C and TGS’s shared secret).{C} KS1
KS1

S is the identity of the server with which C hopes to communicate.
4. GS {K } , {C, K } T → C : S2 KS1

 S2 KS

 is the ticket for S.C, K } { S2 KS

5. {C} , {C, K } C → S : KS2

 S2 KS

 is C identifying itself to SC} { KS2

Problem:
3. GS {C} , {C, K } , S C → T : KS1

 S1 KTGS

The server name is sent unencrypted. An attacker can change the name to , and redirect S′
client traffic to . S′
This attack is not allowed in the actual protocol, just the simplification used in their model.

Challenges formatting adversary:
Formalize knowledge of adversary.
Select finite set of possible actions at any point in protocol run.

Paper outline:
Challenges:

1. State explosion
2. Adversary formulation (how does proverif do this?)
3. How to model the crypto (e.g. malleability properties)

I found the following quite insightful, from [2]:
Thus the verification question is actually: Does the model of the protocol in a fixed configuration
contain an error under the verification assumptions used? If it does, then clearly the protocol is
flawed. If it doesn't, then nothing can directly be said about the protocol correctness for an
arbitrary number of participants and concurrent protocol runs. Also there might be some
cryptanalysis, and implementation detail attacks left out of the verification model. In a way
finite-state verification methods can be seen as a computerized debugging aid to find a subset
of the possible attacks on the protocol analyzed.

The main problem in modelling cryptographic protocols with finite-state systems is the model of
the intruder. The intruder is usually modelled as a state-machine which can remove, add, and
fake messages. The intruder model remembers and can alter all the messages sent as
plaintext, and also remembers the encrypted forms of all message parts which have been sent
encrypted. It can then fake new messages by using parts of the messages it has already seen,
and some initial data it has i.e. intruders own nonces and keys. Creating such an intruder model
is straightforward, but can be nonetheless subtle. The intruder is modelled as a very

nondeterministic state-machine which tries all the combinations of message parts it can create
to deceive the protocol participants. Most of the message sequences generated by such an
intruder model will fail, but because the search is fully automated, it is usually less time
consuming than creating a smarter intruder with human modelling effort.

The problem with the intruder modelling is that in finite-state models the intruder can only have
a finite amount of memory. This effectively limits the length of the protocol runs that can be
analyzed, and also the number of protocol runs and participants that can be analyzed. Also
when the amount of information stored by the intruder grows larger the state-explosion problem
which is seen in normal protocol verification, becomes harder to handle.

One of the issues that needs to be solved is how the encryption and decryption functions should
be modelled. The usual assumption used in finite-state modelling is that the used encryption
functions are ideal, i.e. nothing can be said about the contents of an encrypted message without
having the key needed to decrypt the message. When using such idealizations the protocol
participants, and the intruder model do not actually perform any encryption or decryption
functions. The message format is used to specify which fields the intruder is able to remove
(and alter), and which fields have been encrypted, so their contents is not available to the
intruder for use and modification. Thus the encryption doesn't change the messages passed
around in the protocol (all message fields are actually sent in cleartext), but only the way in
which the intruder can learn and modify the contents of each message field.

Only safety properties (nothing bad will happen) of cryptographic protocols have been verified
so far with finite-state analysis. However also liveness properties (something good will
eventually happen) which talk about the cyclic behavior of the system could in principle be also
verified. The basic problem with verifying liveness properties is the intruder model. The intruder
knowledge monotonically increases as messages are sent, and thus there are no cycles in the
reachability graph of the system model. The only way to overcome this problem is to get rid of
this monotonicity by allowing the intruder to also forget messages it has learned when its'
memory capacity is exceeded. This is quite a radical change in the intruder model, but we think
it's the only possibility when verifying liveness properties.

However even this change is not enough to verify liveness properties. The problem is that the
intruder can choose to cut-off all communication between the protocol participants. Clearly if this
is the case then the participants won't be able to finish the protocol. What this calls for is again a
limitation on the intruder model. We could for example assume that the intruder won't be able to
intercept all messages if a protocol participant keeps on sending a message. A property like this
can be verified using standard finite-state verification methodology by using fairness
assumptions. The liveness property verification could be useful in analyzing denial-of-service
attacks, under the assumption that the intruder has only partial control over the communication
network used.

The following explanations of Scalarsets and Multisets come from [3]:
● Scalarsets are enumerated types. They are similar to enum types in C++. For

example, type declaration AgentId:scalarset(5) says that variables of type AgentId can
take one of 5 (unnamed) values. Scalarset types are simply finite, unordered sets of
values.

● If you write ruleset i: ScalarType where ScalarType is a Scalarset type, then the
enclosed rule will be executed once for every possible value of ScalarType. For each
execution, the current value can be accessed as i.

● Multisets are data structures. A multiset is a set in which the same element may be
included more than once. Multisets are similar to arrays, except that they are unordered.

● If you write multisetcount(m:mset,P) where mset is declared as a multiset and P is a
predicate (i.e., a function returning true or false), then P will be applied to every element
of the multiset mset, and the return value of multisetcount will be the number of elements
of mset on which P evaluates to true. Within the body of P, the current element (i.e., the
element to which the predicate P is being applied) can be accessed as mset[m].

Resources for protocols:
Lowe’s attack on Needham-Schroeder Public-Key [4] details the first protocol covered in the
paper. This is a better explanation, the paper [4] is very short and approachable.

In the past I’ve found this play [5] helpful for understanding Kerberos and the sort of give and
take in security protocol designs.

[1] E. Tews , R-P. Weinmann , A. Pyshkin, Breaking 104 Bit WEP in less than 60 seconds, Proceedings
of the 8th international conference on Information security applications, August 27-29, 2007, Korea

[2] K. Heljanko. Can finite-state system verification methods help cryptographic protocol analysis?
Technical report, Helsinki University of Technology, Laboratory for Theoretical Computer Science,
Finland, 1998.

[3] Design and Analysis of Security Protocols. Accessed April 11, 2017.
http://www.cs.utexas.edu/~shmat/courses/cs395t_fall04/cs395t_murphi.html.

[4] An Attack on the Needham-Schroeder Public-Key Authentication Protocol, Gavin Lowe, Information
Processing Letters, 1995.

[5] Designing an Authentication System: a Dialogue in Four Scenes. Front Cover. Bill Bryant. M.I.T.,
Project Athena, 1988 - 26 pages.

http://www.cs.ox.ac.uk/gavin.lowe/Security/Papers/NSPKP.ps
http://www.cs.utexas.edu/~shmat/courses/cs395t_fall04/cs395t_murphi.html

