
Introduction
● Social sign-on: users use social networks to sign on to a third-party site

○ Microsoft, Facebook (OAuth), Google (OpenID)
● Example: Yelp

○ Yelp allows you to log on via Facebook
○ Clicking login will open a window with Facebook login
○ Facebook will prompt for permission for Yelp to access certain data
○ Returns to Yelp with successful authentication

● Security goals
○ User doesn't want unauthorized access to personal info
○ Yelp wants to ensure that user is correct
○ Facebook wants to ensure Yelp and user are who they say they are
○ Need to be secure over insecure web!

● Social Login CSRF
○ Assumptions

■ User must have previously logged into third party client via OAuth, e.g.
Facebook

■ Facebook only asks for authorization the first time
○ Attacker controlled site can log into third party client and access third-party APIs

on behalf of user without user's knowledge

OAuth

● OAuth 2.0 involved parties
○ Resource server
○ trusted authorization server
○ Resource owner
○ user agent
○ client

● Comparison with first OAuth
○ flows are protocol configurations
○ lightweight and flexible

● User Agent flow
○ Used to perform auth from a user-agent running a client application
○ Figure below details flow

● Web Server Flow

○ Used between client server and resource server/auth server
○ Figure below details flow

● Protocol parameters

○ redirection URI: tells where the authorization server should sent its response
(the access token) to. This in effect determines where the user agent navigates
to after authorization.

○ state: a nonce that is strongly bound to a resource owner's session. It is attached
to the request when client app tells user agent to redirect to auth server.

■ prevents Social CSRF
● Threat model

○ network attackers
○ malicious sites
○ malicious redirectors
○ existing CSRF vulns in clients

● Security goals are modeled in Datalog-like policies

WebSpi
● A library of idioms useful in modeling web app security
● Model constituents

○ Principals: users and servers
■ own credentials / pub-priv keys
■ WebSurfer

○ Processes: Receives and responds over channels; does actions
■ CredentialFactory
■ HttpClient (e.g. browsers)
■ HttpServer

○ Channels: communication pathways
■ net: HttpClient communicates with HttpServer
■ httpClientRequest: user submits http request & uri to HttpClient over this

private channel
■ httpClientResponse: HttpClient returns response through this private

channel
● Security policies

○ Assume(...): Adds given statement to global knowledge
■ Assume(UserSends(user,message))

○ Expect(...): Must be able to prove statement at this point in the code
■ Expect(ServerAuthorizes(s,u,d)): prove that server s is willing to authorize

user u to get data d
○ "security policies are defined as Horn clauses extending a predicate fact"

■ "A Horn clause with exactly one positive literal is a definite clause; a definite
clause with no negative literals is sometimes called a fact; and a Horn clause
without a positive literal is sometimes called a goal clause (note that the
empty clause consisting of no literals is a goal clause)."

○ Says(...): if a fact e is true, then it is assumed to be said by any principal. If a
principal is compromised, then the principal is untrusted and can say anything.

● Modeling
○ Three processes: process running on HttpServer, client process on HttpClient,

user process using a user-agent
○ LoginUserAgent() process

■ in(httpClientResponse, (....))
● gets a login page info in (...) from channel httpClientResponse,

which is the response received by httpclient when requesting login
page

○ LoginApp() process
● Attacker model

○ Dolev-Yao
○ All channels and tables in WebSpi are private by default
○ AttackerProxy

■ receives commands on public chan "admin", and sends results out on
public chan "result".

■ Manage principals
■ Network attacks
■ Start malicious client sites / client webapps
■ Inject malicious javascript to HttpClient

OAuth 2.0: ProVerif Analysis
● OAuth 2.0 Model

○ Login application
■ process LoginApp + user-agent LoginUserAgent
■ Models form-based login

○ Data Server
■ Models resource servers

○ user-agent flow
■ OAuthImplicitServerApp: auth servers
■ OAuthUserAgent: resource owners

○ web server flow
■ OAuthExplicitClientApp: clients
■ OAuthExplicitServerApp: auth servers

● Positive ProVerif verification
○ attacker model: network, malicious resource owners, malicious clients, malicious

sites, malicious javascript, OAuth implicit + explicit flows
■ no http redirectors, no CSRF on honest apps

● Attacks
○ Social CSRF

○ Token redirection

