
Towards Fully Automatic Logic-Based Information Flow
Analysis: An Electronic-Voting Case Study
Lecture Notes

Introduction

● Common information flow analysis approaches:
○ Logic Based - precise, not automatic, difficult to use for large programs
○ Over approximation - type-based, dependency graph or abstract interpretation,

automatic, lack precision
● This approach: based on self composition and symbolic execution that uses abstract

interpretation
● Approach summary:

○ Generate specifications for unbounded loops and recursive method calls
○ Use KEG tool to detect policy violations (information flow leaks)

● This approach is applied to two versions (one correct and one faulty) of an e-voting
system

Symbolic Execution Review:
● Main idea: run program with symbolic values instead of concrete ones
● Result: Symbolic execution tree

○ Branches: Contain previous path conditions and added branch condition
○ Nodes: Symbolic State
○ No unbounded loops or recursive method calls means the tree is finite and

covers all possible executions
○ Unbounded loops or recursive method calls means the tree will be infinite

Dynamic Logic
(Source: ​A Theorem Proving Approach to Analysis of Secure Information Flow​ by Ádám Darvas,
Reiner Hähnle, and David Sands)

● is the state that is reached by running program p〉〈 p
● - terminates in a state in which holds.p〉Φ〈 p Φ
● is valid if for every state satisfying precondition a run of starting atp〉ΨΦ → 〈 s Φ p

terminates in a state in which holds.s Ψ
● Dual operator :][p]Φ 〈p〉¬Φ[≡ ¬
● the value r of l.≐lr
● Secure information flow in DL: . “When starting with arbitraryl. ∃r. ∀h. 〈p〉 r ≐l∀ p

values , the value of after executing is independent in the choice of l r l p .h
● Secure information flow in DL, another way: l, , , .(l≐l∀ l′ h h′ ′ → p{l, }; {l , }〉l≐l)〈 h p ′ h′ ′

“Running two instances of with equal low-security values and arbitrary high-securityp
values, the resulting low security values are equal too.”

http://www.cse.chalmers.se/~dave/papers/Sands-SPC05.pdf

Noninterference
● Given a program and a set of variables partitioned into two sets and . ifp V H L ↛LH

there is no information flow from to .H L
● iff any two execution states of starting in initial states that coincide on also↛LH p L

terminate in two states that coincide on L
● Eq 1: Formalism (self composition), given a copy of , p′ p ↛L L≐L}p(V); p (V){L≐L}H ≡ { ′ ′ ′ ′

(If the two low-security values are equal before execution of and , they will be equalp p′
after execution.)

● Issue with this formalization: requires to be analyzed twice, but this can be done usingp
symbolic execution.

● Notation:
○ is the Symbolic Execution tree of ES p p
○ For each symbolic execution path , the path condition of that path is denoted byi

.cp i
○ For some symbolic input and variable , maps from the symbolic inputs toi v f i

v
the symbolic final value of v

○ is the number of symbolic execution paths of Np ES p
● We only need to symbolically execute once and represent two executions of and p p p′

by two symbolic execution paths of with different symbolic inputs and .ES p V V ′
● SMT (Satisfiable Modulo Theory - good for inputting into theorem provers) formula

(same meaning as Eq 1): ((⋀ v≐v)∧pc (V)∧pc (V) f (V)≐f (V))⋀0≤i≤j≤Np v∈L ′ i j ′ ⇒ ⋀l∈L i
l

j
l ′

● Negation of this formula: , where =⋁ Leak(H, , , ,)⋁l∈L 0≤i≤j≤Np L l i j eak(H, , , ,)L L l i j

⋀ v≐v)∧pc (V)∧pc (V)∧¬(f (V)≐f (V))(v∈L ′ i j ′ i
l

j
l ′

● If this leak function is satisfiable, there exists a forbidden information flow from some
variables of to a variable . Otherwise, is secure with respect to theH l∈ L p
noninterference policy.

● Possible issue: if contains unbounded loops or recursive method calls, becomesp ES p
infinite. However, there is a method that represents loops and method calls as
corresponding single nodes of a symbolic execution tree and use loop invariants and
method contracts to contribute to relevant path conditions and to the representation of
the tree. Therefore our goal is to specify these loop invariants and method contracts.

● Implementation: Used KEG (KeY Exploit Generation) software, which when given
information flow policies, can detect leaks and generate exploits in the form of JUnit
tests. How KEG works: symbolically execute method, compose all insecurity formulas,
find models satisfying formulas, then generate JUnit tests from found models.

Generating Invariants using Abstract Interpretation
● JavaDL calculus used by KeY

○ Updates - used to cover state changes in variables and to model the heap
memory as a program variable

○ Updates are created in symbolic execution whenever a field or variable changes
its value

○ means program variable is updated to ≔tx x t
○ are parallel updates॥UU ′
○ applies updates to formulas. Example: is equal to ·}{ · x≔t}(2x){ t2
○ updates eap ≔store(heap(a, ,))h i t [i]a = t

● Abstract Interpretation:
○ Lose precision within the analysis for more automation
○ Combined with symbolic execution, allows for ​abstract symbolic values​, which

represent items in a specific set of concrete values called the ​abstract element.
The abstract elements make up the abstract domain.

○ Property: if and are symbolic values, is a set which encompasses ata1 a2 ⊔aa1 2
least all the concrete values of the two input values.

○ Information loss:
■ may contain more values than and individually⊔aa1 2 a1 a2
■ Abstracting a set of concrete values to an abstract value means trying to

find an abstract value that represents all of the concrete values
○ Abstract functions:

■ Used to express within updates properties of variables
■ is an abstract function, where is the abstract element and γα,z α z∈ ℤ

identifies the abstract function, example: sets x to some positive x≔γ>,1
value

■ The description of each is contained in the characteristic function α Χα
● Generating Loop Invariants

○ Abstraction of variables: Loop is symbolically executed once, and symbolic
program states are joined with the initial symbolic program state, for each
variable, the value in the update is abstracted, then all abstract elements are
joined. This is repeated until another iteration doesn’t produce a weaker update.

○ Abstraction of arrays: Arrays are split into two parts: potentially modified and
unmodified. If a sequence of array accesses in monotonously increasing or
decreasing, this split moves each iteration in the same direction. The invariant
can be specified this way: where is thei. (initial ∧i d) (arr[i])∀ ≤ i < i → Χα di
current index and is the value of before the loop.nitial i di

○ The invariants are then translated into JML(java modeling language)
E-Voting Case Study

● Game: Adversary provides 2 vectors of choices of voters and such that they allc0 c1
yield the same result. Afterwards, the voters vote according to for a secret bit andcb ,b
see if the adversary can tell which they followed.cb

● For leak detection, they modify the method so that the results don’t include the first vote
in each . Their method correctly detected this leak.c

