
Marquis Hackett

Micro-Policy Monitors with Tags, Lecture Notes

Can we build it? Yes, we can.

This paper focuses on the problem of creating a monitor for a given safety property that will run 
in “the hardware.” Running a monitor is a way to make sure some system upholds some 
security property. However, running it in the software can be computationally expensive. We 
regain performance by designing a special machine that runs this monitor in hardware. The 
researchers come up with a “backwards-refinement” strategy for creating a monitor in the 

hardware. Construct an 
“abstract machine” that 
specifies the property. Do a 
“backwards-refinement” by 
constructing a “symbolic 
machine” that uses tags, and 
also encapsulates the 
property specified in the 
abstract machine. They 
describe the process for 
several safety properties. 
(Memory Safety, Control Flow 
Integrity, 
Compartmentalization, 
Sealing). 

The symbolic machine can 
then be translated into a 

concrete machine monitor that can be executed on real hardware (i.e. hardware that is 
touchable, not imaginary). They describe a machine with a simplified instruction set based on 
RISC and architecture based on “PUMP.” 

What is a monitor?
So, we execute our program, and want to make sure some security property is upheld. We 
accomplish this by executing a “monitor” alongside our program. The monitor approximates the 
execution of the program, and alerts us if the property is violated. In this case, the monitor is 
realized with a transition function; if the program tries to take a transition that is not defined in 
the transition function (that is, if the program tries to enter a state from a state when this state 
transition is not approved), then when halt and catch fire, etc. 

The Basic (Abstract) Machine
This is a rule from the abstract machine. 
More on this late, but for now, just notice that 
it has no “tags.” In order to customize an 
abstract machine for your specific micro-
policy, you add another rule like this. For 
example, look at the step rule for “seal” from 
the abstract sealing machine. This adds a 
rule for the things that go on when something 
is being sealed.



Marquis Hackett

Symbolic Machine
Symbolic states are represented by a tuple containing (mem, reg, pc, extra). These are 
symbolic atoms represented by w@t, which means “The thing that is w can be found at memory 
address t”.

This (left) is an example of one of the symbolic 
rules that correspond to an instruction in our 
reduced instruction set. Loosely speaking, it 
means “If all of the stuff above the line is true/
happening/live, then take the transition/step 
below the line. All of the rules are defined 
similarly. 

As a useful example of this whole transfer thing, consider taint tracking. Symbolic tags {tainted, 
untainted}. Also, _ is a “don’t care” character. With this transfer function, that’s how we get our 
policy violation halt and catch fire. Really, it just gets stuck. If transfer(…) doesn’t return 
anything, that means there was no thing defined for it in the transition function. That is, this 
wasn’t allowed by our property. then that “condition above the line” wont be true, and the 

program cannot step. So it’s 
stuck because we violated our 
property.

With the symbolic machine, we 
add this guy, the get_service 
step rule. We have these 
modular things (“services”) that 
encapsulate policy specific 
functionality. This step rule will 
kick the monitor over to the step rule defined by “Service” (e.g. unseal), and then service, when 
it’s done, will put the monitor back where it came from.

The Concrete Machine
We are now at the point where our fancy idea must execute on mere mortal machines. 

First, consider the tags. The tags must be represented using fixed length words. We define a 
function that maps these “concrete tags” to symbolic tags. A concrete tag is a valid user tag if it 
can be decoded into a symbolic tag.

Then, consider the lobster. The monitor must be able to protect itself from being tampered with 
as well. Since we don’t have any special memory protection, this translates to making sure that 
neither the special (not privileged, technically) instructions like “AddRule, PutRule, GetTag and 
JumpFpc” , nor any of the monitor code itself can be run by anyone but the monitor. We add 
special “Monitor” tags to these things, and the Miss Handler checks for these codes. This is also 
realized by the “Miss Handler,” which jumps to an address, or halts the machine.



Marquis Hackett

Qualms and Considerations
The technique is modular and easily replicable. “Easily,” in the sense that there are well defined 
steps to follow in order to go from property definition to concrete machine. However, this still 
involves a significant amount of proof-by-hand. Which (c.f. multiplying 10,000 operands) is 
prone to error. Therefore, even though this technique upholds the spirit of formal verification, I 
would prefer a technique that is more automated. (read: a method that requires less of the user 
(read: requires less of me)). 

Another note: the real machine that is being used is very (adv.) simple. No hardware stack, No 
separate instruction memory, no call stack, no memory protection. That’s impressive. 

Another note: I’ve liberally exchanged the terms micro-policy, policy, property, and safety 
property. I believe I’ve done so in a manner consistent with the true meaning of each of these 
terms, but intellectual humility dictates that I confirm my assumption. Also, why is it called a 
micro-policy?

Another note: Code on their github page. There is a missing “Makefile.coq” , but aside from that, 
It’s very satisfying to see an academic project that is maintained and will compile on command 
(presumably).


